package main; public class SimilarityBasedSearch { /** * Computes the mean value of a gray-scale image given as a 2D array * * @param image : a 2D double array, the gray-scale Image * @return a double value between 0 and 255 which is the mean value */ public static double mean(double[][] image) { assert image.length != 0 : "image contains no pixel"; double sum = 0; for (int i = 0; i < image.length; i++) { for (int j = 0; j < image[0].length; j++) { sum += image[i][j]; } } return sum / ((double) image.length * image[0].length); } /** * Computes the mean value of a part of an image * * @param matrix : a 2D array of double, the gray-scale image we want to calculate the mean value of a part * @param row : a integer, the row-coordinate of the upper left corner of the pattern in the image. * @param column : a integer, the column-coordinate of the upper left corner of the pattern in the image. * @param width : a integer, the width of the window. * @param height : a integer, the height of the window. * @return a double, the mean value of the specified part of the input matrix */ static double windowMean(double[][] matrix, int row, int col, int width, int height) { double[][] temp = new double[width][height]; for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { temp[i][j] = matrix[i + row][j + col]; } } return mean(temp); } /** * Computes the Normalized Cross Correlation of a gray-scale pattern if positioned * at the provided row, column-coordinate in a gray-scale image * * @param row : a integer, the row-coordinate of the upper left corner of the pattern in the image. * @param column : a integer, the column-coordinate of the upper left corner of the pattern in the image. * @param pattern : an 2D array of doubles, the gray-scale pattern to find * @param image : an 2D array of double, the gray-scale image where to look for the pattern * @return a double, the Normalized Cross Correlation value at position (row, col) between the pattern and the part of * the base image that is covered by the pattern, if the pattern is shifted by x and y. * should return -1 if the denominator is 0 */ public static double normalizedCrossCorrelation(int row, int col, double[][] pattern, double[][] image) { assert image.length != 0 : "image contains no pixel"; assert pattern.length != 0 : "pattern contains no pixel"; double wmean = windowMean(image, row, col, pattern.length, pattern[0].length); double m = mean(pattern); double sum1 = 0, sum2 = 0, sum3 = 0; for (int i = 0; i < pattern.length; i++) { for (int j = 0; j < pattern[0].length; j++) { sum1 += (image[row + i][col + j] - wmean) * (pattern[i][j] - m); sum2 += (image[row + i][col + j] - wmean) * (image[row + i][col + j] - wmean); sum3 += (pattern[i][j] - m) * (pattern[i][j] - m); } } double result; if ((Math.sqrt(sum2 * sum3)) == 0) result = -1; else result = sum1 / (Math.sqrt(sum2 * sum3)); return result; } /** * Compute the similarityMatrix between a gray-scale image and a gray-scale pattern * * @param pattern : an 2D array of doubles, the gray-scale pattern to find * @param image : an 2D array of doubles, the gray-scale image where to look for the pattern * @return a 2D array of doubles, containing for each pixel of a original gray-scale image, * the similarity (normalized cross-correlation) between the image's window and the pattern * placed over this pixel (upper-left corner) */ public static double[][] similarityMatrix(double[][] pattern, double[][] image) { assert pattern.length != 0 : "pattern contains no pixel"; assert image.length != 0 : "image contains no pixel"; int W = image[0].length; int w = pattern[0].length; int H = image.length; int h = pattern.length; double[][] matrix = new double[H - h + 1][W - w + 1]; for (int i = 0; i < H - h + 1; i++) { for (int j = 0; j < W - w + 1; j++) { matrix[i][j] = normalizedCrossCorrelation(i, j, pattern, image); } } return matrix; } }