pylint refactor

This commit is contained in:
lorenzo 2019-05-22 19:35:24 +02:00
parent eeea8945fb
commit 0a56b439d1

View File

@ -10,17 +10,16 @@ import json
import logging
import time
from models.architectures import LinearModel
from utils.camera import preprocess_single, get_keypoints, get_depth
from utils.misc import epistemic_variance, laplace_sampling, get_idx_max
from visuals.printer import Printer
from utils.normalize import unnormalize_bi
from utils.kitti import get_simplified_calibration, get_calibration
from utils.pifpaf import get_input_data
import numpy as np
import torch
from models.architectures import LinearModel
from visuals.printer import Printer
from utils.camera import get_depth
from utils.misc import laplace_sampling, get_idx_max
from utils.normalize import unnormalize_bi
from utils.pifpaf import get_input_data
class PredictMonoLoco:
@ -76,7 +75,7 @@ class PredictMonoLoco:
get_input_data(self.boxes, self.keypoints, kk, left_to_right=True)
# Conversion into torch tensor
if len(inputs_norm) > 0:
if inputs_norm:
with torch.no_grad():
inputs = torch.from_numpy(np.array(inputs_norm)).float()
inputs = inputs.to(self.device)
@ -87,7 +86,7 @@ class PredictMonoLoco:
total_outputs = torch.empty((0, len(xy_kps))).to(self.device)
if self.n_dropout > 0:
for ii in range(self.n_dropout):
for _ in range(self.n_dropout):
outputs = self.model(inputs)
outputs = unnormalize_bi(outputs)
samples = laplace_sampling(outputs, self.n_samples)