pylint refactor
This commit is contained in:
parent
eeea8945fb
commit
0a56b439d1
@ -10,17 +10,16 @@ import json
|
|||||||
import logging
|
import logging
|
||||||
import time
|
import time
|
||||||
|
|
||||||
from models.architectures import LinearModel
|
|
||||||
from utils.camera import preprocess_single, get_keypoints, get_depth
|
|
||||||
from utils.misc import epistemic_variance, laplace_sampling, get_idx_max
|
|
||||||
from visuals.printer import Printer
|
|
||||||
from utils.normalize import unnormalize_bi
|
|
||||||
from utils.kitti import get_simplified_calibration, get_calibration
|
|
||||||
from utils.pifpaf import get_input_data
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from models.architectures import LinearModel
|
||||||
|
from visuals.printer import Printer
|
||||||
|
from utils.camera import get_depth
|
||||||
|
from utils.misc import laplace_sampling, get_idx_max
|
||||||
|
from utils.normalize import unnormalize_bi
|
||||||
|
from utils.pifpaf import get_input_data
|
||||||
|
|
||||||
|
|
||||||
class PredictMonoLoco:
|
class PredictMonoLoco:
|
||||||
|
|
||||||
@ -76,7 +75,7 @@ class PredictMonoLoco:
|
|||||||
get_input_data(self.boxes, self.keypoints, kk, left_to_right=True)
|
get_input_data(self.boxes, self.keypoints, kk, left_to_right=True)
|
||||||
|
|
||||||
# Conversion into torch tensor
|
# Conversion into torch tensor
|
||||||
if len(inputs_norm) > 0:
|
if inputs_norm:
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
inputs = torch.from_numpy(np.array(inputs_norm)).float()
|
inputs = torch.from_numpy(np.array(inputs_norm)).float()
|
||||||
inputs = inputs.to(self.device)
|
inputs = inputs.to(self.device)
|
||||||
@ -87,7 +86,7 @@ class PredictMonoLoco:
|
|||||||
total_outputs = torch.empty((0, len(xy_kps))).to(self.device)
|
total_outputs = torch.empty((0, len(xy_kps))).to(self.device)
|
||||||
|
|
||||||
if self.n_dropout > 0:
|
if self.n_dropout > 0:
|
||||||
for ii in range(self.n_dropout):
|
for _ in range(self.n_dropout):
|
||||||
outputs = self.model(inputs)
|
outputs = self.model(inputs)
|
||||||
outputs = unnormalize_bi(outputs)
|
outputs = unnormalize_bi(outputs)
|
||||||
samples = laplace_sampling(outputs, self.n_samples)
|
samples = laplace_sampling(outputs, self.n_samples)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user