add assertion for arg --dir_ann
This commit is contained in:
parent
e7a9807518
commit
3771555f36
12
README.md
12
README.md
@ -120,11 +120,11 @@ Below an example on a generic image from the web, created with:
|
||||
Download KITTI ground truth files and camera calibration matrices for training
|
||||
from [here](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) and
|
||||
save them respectively into `data/kitti/gt` and `data/kitti/calib`.
|
||||
To extract pifpaf joints, you also need to download training images, put it in any folder and soft link in `
|
||||
To extract pifpaf joints, you also need to download training images soft link the folder in `
|
||||
data/kitti/images`
|
||||
|
||||
#### 2) nuScenes dataset
|
||||
Download nuScenes dataset from [nuScenes](https://www.nuscenes.org/download) (either Mini or Full),
|
||||
Download nuScenes dataset from [nuScenes](https://www.nuscenes.org/download) (either Mini or TrainVal),
|
||||
save it anywhere and soft link it in `data/nuscenes`
|
||||
|
||||
|
||||
@ -135,7 +135,7 @@ You can create them running the predict script and using `--networks pifpaf`.
|
||||
### Inputs joints for training
|
||||
MonoLoco is trained using 2D human pose joints matched with the ground truth location provided by
|
||||
nuScenes or KITTI Dataset. To create the joints run: `python src/main.py prep` specifying:
|
||||
1. `--dir_ann` annotation directory containing pifpaf joints of kitti or nuScenes.
|
||||
1. `--dir_ann` annotation directory containing Pifpaf joints of KITTI or nuScenes.
|
||||
|
||||
2. `--dataset` Which dataset to preprocess. For nuscenes, all three versions of the
|
||||
dataset are supported: nuscenes_mini, nuscenes, nuscenes_teaser.
|
||||
@ -185,11 +185,13 @@ and save them into `data/kitti/monodepth`
|
||||
The best average value for comparison can be created running `python src/main.py eval --geometric`
|
||||
|
||||
#### Evaluation
|
||||
First the model preprocess the joints starting from json annotations predicted from pifpaf, runs the model and save the results
|
||||
First the model preprocess the joints starting from json annotations predicted from pifpaf,
|
||||
runs the model and save the results
|
||||
in txt file with format comparable to other baseline.
|
||||
Then the model performs evaluation.
|
||||
|
||||
The following graph is obtained running:
|
||||
`python3 src/main.py eval --dataset kitti --model data/models/base_model.pickle`
|
||||
`python3 src/main.py eval --dataset kitti --run_kitti --model data/models/monoloco-190513-1437.pkl
|
||||
--dir_ann <folder containing pifpaf annotations of KITTI images>`
|
||||

|
||||
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 694 KiB |
BIN
docs/results.png
BIN
docs/results.png
Binary file not shown.
|
Before Width: | Height: | Size: 53 KiB |
@ -119,7 +119,7 @@ class KittiEval:
|
||||
print("\n Number of matched annotations: {:.1f} %".format(self.errors[key]['matched']))
|
||||
print("-"*100)
|
||||
|
||||
def print(self, show):
|
||||
def printer(self, show):
|
||||
print_results(self.dic_stats, show)
|
||||
|
||||
def _parse_txts(self, path, method):
|
||||
|
||||
@ -17,6 +17,7 @@ class RunKitti:
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# Set directories
|
||||
assert dir_ann, "Annotations folder is required"
|
||||
self.dir_ann = dir_ann
|
||||
self.average_y = 0.48
|
||||
self.n_dropout = n_dropout
|
||||
|
||||
@ -145,7 +145,7 @@ def main():
|
||||
if args.dataset == 'kitti':
|
||||
kitti_eval = KittiEval()
|
||||
kitti_eval.run()
|
||||
kitti_eval.print(show=args.show)
|
||||
kitti_eval.printer(show=args.show)
|
||||
|
||||
if 'nuscenes' in args.dataset:
|
||||
training = Trainer(joints=args.joints)
|
||||
|
||||
@ -31,7 +31,7 @@ def print_results(dic_stats, show=False, save=False):
|
||||
plt.xlabel("Distance [meters]")
|
||||
plt.ylabel("Average localization error [m]")
|
||||
plt.xlim(x_min, x_max)
|
||||
labels = ['Mono3D', 'Geometric Baseline', 'MonoDepth', 'Our MonoLoco', '3DOP']
|
||||
labels = ['Mono3D', 'Geometric Baseline', 'MonoDepth', 'Our MonoLoco', '3DOP (stereo)']
|
||||
mks = ['*', '^', 'p', 's', 'o']
|
||||
mksizes = [6, 6, 6, 6, 6]
|
||||
lws = [1.5, 1.5, 1.5, 2.2, 1.6]
|
||||
|
||||
Loading…
Reference in New Issue
Block a user