adjust parser
This commit is contained in:
parent
751b7592e5
commit
453e4b7b24
@ -1,81 +0,0 @@
|
||||
# Monoloco library
|
||||
|
||||
<img src="docs/monoloco.gif" alt="gif" />
|
||||
|
||||
|
||||
This repository contains the code for two research projects:
|
||||
|
||||
1. **Perceiving Humans: from Monocular 3D Localization to Social Distancing (MonoLoco++)**
|
||||
[README](https://github.com/vita-epfl/monstereo/blob/master/docs/MonoLoco%2B%2B.md) & [Article](https://arxiv.org/abs/2009.00984)
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
2. **MonStereo: When Monocular and Stereo Meet at the Tail of 3D Human Localization**
|
||||
[README](https://github.com/vita-epfl/monstereo/blob/master/docs/MonStereo.md) & [Article](https://arxiv.org/abs/2008.10913)
|
||||
|
||||

|
||||
|
||||
Both projects has been built upon the CVPR'19 project [Openpifpaf](https://github.com/vita-epfl/openpifpaf)
|
||||
for 2D pose estimation and the ICCV'19 project [MonoLoco](https://github.com/vita-epfl/monoloco) for monocular 3D localization.
|
||||
All projects share the AGPL Licence.
|
||||
|
||||
|
||||
# Setup
|
||||
Installation steps are the same for both projects.
|
||||
|
||||
### Install
|
||||
The installation has been tested on OSX and Linux operating systems, with Python 3.6 or Python 3.7.
|
||||
Packages have been installed with pip and virtual environments.
|
||||
For quick installation, do not clone this repository,
|
||||
and make sure there is no folder named monstereo in your current directory.
|
||||
A GPU is not required, yet highly recommended for real-time performances.
|
||||
MonoLoco++ and MonStereo can be installed as a single package, by:
|
||||
|
||||
```
|
||||
pip3 install monstereo
|
||||
```
|
||||
|
||||
For development of the monstereo source code itself, you need to clone this repository and then:
|
||||
```
|
||||
pip3 install sdist
|
||||
cd monstereo
|
||||
python3 setup.py sdist bdist_wheel
|
||||
pip3 install -e .
|
||||
```
|
||||
|
||||
### Interfaces
|
||||
All the commands are run through a main file called `main.py` using subparsers.
|
||||
To check all the commands for the parser and the subparsers (including openpifpaf ones) run:
|
||||
|
||||
* `python3 -m monstereo.run --help`
|
||||
* `python3 -m monstereo.run predict --help`
|
||||
* `python3 -m monstereo.run train --help`
|
||||
* `python3 -m monstereo.run eval --help`
|
||||
* `python3 -m monstereo.run prep --help`
|
||||
|
||||
or check the file `monstereo/run.py`
|
||||
|
||||
### Data structure
|
||||
|
||||
Data
|
||||
├── arrays
|
||||
├── models
|
||||
├── kitti
|
||||
├── figures
|
||||
├── logs
|
||||
|
||||
|
||||
Run the following to create the folders:
|
||||
```
|
||||
mkdir data
|
||||
cd data
|
||||
mkdir arrays models kitti figures logs
|
||||
```
|
||||
|
||||
Further instructions for prediction, preprocessing, training and evaluation can be found here:
|
||||
|
||||
* [MonoLoco++ README](https://github.com/vita-epfl/monstereo/blob/master/docs/MonoLoco%2B%2B.md)
|
||||
* [MonStereo README](https://github.com/vita-epfl/monstereo/blob/master/docs/MonStereo.md)
|
||||
@ -15,20 +15,7 @@ def cli():
|
||||
training_parser = subparsers.add_parser("train")
|
||||
eval_parser = subparsers.add_parser("eval")
|
||||
|
||||
# Preprocess input data
|
||||
prep_parser.add_argument('--dir_ann', help='directory of annotations of 2d joints', required=True)
|
||||
prep_parser.add_argument('--dataset',
|
||||
help='datasets to preprocess: nuscenes, nuscenes_teaser, nuscenes_mini, kitti',
|
||||
default='kitti')
|
||||
prep_parser.add_argument('--dir_nuscenes', help='directory of nuscenes devkit', default='data/nuscenes/')
|
||||
prep_parser.add_argument('--iou_min', help='minimum iou to match ground truth', type=float, default=0.3)
|
||||
prep_parser.add_argument('--variance', help='new', action='store_true')
|
||||
prep_parser.add_argument('--activity', help='new', action='store_true')
|
||||
prep_parser.add_argument('--monocular', help='new', action='store_true')
|
||||
|
||||
# Predict (2D pose and/or 3D location from images)
|
||||
# General
|
||||
|
||||
predict_parser.add_argument('images', nargs='*', help='input images')
|
||||
predict_parser.add_argument('--glob', help='glob expression for input images (for many images)')
|
||||
predict_parser.add_argument('-o', '--output-directory', help='Output directory')
|
||||
@ -52,14 +39,12 @@ def cli():
|
||||
help='focal length in mm for a sensor size of 7.2x5.4 mm. Default nuScenes sensor',
|
||||
type=float, default=5.7)
|
||||
|
||||
# Pifpaf parsers
|
||||
decoder.cli(parser)
|
||||
logger.cli(parser)
|
||||
network.Factory.cli(parser)
|
||||
show.cli(parser)
|
||||
visualizer.cli(parser)
|
||||
|
||||
# Monoloco
|
||||
predict_parser.add_argument('--mode', help='keypoints, mono, stereo', default='mono')
|
||||
predict_parser.add_argument('--model', help='path of MonoLoco/MonStereo model to load')
|
||||
predict_parser.add_argument('--net', help='only to select older MonoLoco model, otherwise use --mode')
|
||||
@ -75,10 +60,20 @@ def cli():
|
||||
predict_parser.add_argument('--threshold_dist', type=float, help='min distance of people', default=2.5)
|
||||
predict_parser.add_argument('--radii', type=tuple, help='o-space radii', default=(0.3, 0.5, 1))
|
||||
|
||||
# Preprocess input data
|
||||
prep_parser.add_argument('--dir_ann', help='directory of annotations of 2d joints', required=True)
|
||||
prep_parser.add_argument('--dataset',
|
||||
help='datasets to preprocess: nuscenes, nuscenes_teaser, nuscenes_mini, kitti',
|
||||
default='kitti')
|
||||
prep_parser.add_argument('--dir_nuscenes', help='directory of nuscenes devkit', default='data/nuscenes/')
|
||||
prep_parser.add_argument('--iou_min', help='minimum iou to match ground truth', type=float, default=0.3)
|
||||
prep_parser.add_argument('--variance', help='new', action='store_true')
|
||||
prep_parser.add_argument('--activity', help='new', action='store_true')
|
||||
prep_parser.add_argument('--monocular', help='new', action='store_true')
|
||||
|
||||
# Training
|
||||
training_parser.add_argument('--joints', help='Json file with input joints',
|
||||
default='data/arrays/joints-nuscenes_teaser-190513-1846.json')
|
||||
training_parser.add_argument('--no_save', help='to not save model and log file', action='store_true')
|
||||
training_parser.add_argument('--joints', help='Json file with input joints', required=True)
|
||||
training_parser.add_argument('--mode', help='mono, stereo', default='mono')
|
||||
training_parser.add_argument('-e', '--epochs', type=int, help='number of epochs to train for', default=500)
|
||||
training_parser.add_argument('--bs', type=int, default=512, help='input batch size')
|
||||
training_parser.add_argument('--monocular', help='whether to train monoloco', action='store_true')
|
||||
@ -94,9 +89,12 @@ def cli():
|
||||
training_parser.add_argument('--print_loss', help='print training and validation losses', action='store_true')
|
||||
training_parser.add_argument('--auto_tune_mtl', help='whether to use uncertainty to autotune losses',
|
||||
action='store_true')
|
||||
training_parser.add_argument('--no_save', help='to not save model and log file', action='store_true')
|
||||
|
||||
# Evaluation
|
||||
eval_parser.add_argument('--mode', help='mono, stereo', default='mono')
|
||||
eval_parser.add_argument('--dataset', help='datasets to evaluate, kitti or nuscenes', default='kitti')
|
||||
eval_parser.add_argument('--activity', help='evaluate activities', action='store_true')
|
||||
eval_parser.add_argument('--geometric', help='to evaluate geometric distance', action='store_true')
|
||||
eval_parser.add_argument('--generate', help='create txt files for KITTI evaluation', action='store_true')
|
||||
eval_parser.add_argument('--dir_ann', help='directory of annotations of 2d joints (for KITTI evaluation)')
|
||||
@ -109,10 +107,9 @@ def cli():
|
||||
eval_parser.add_argument('--show', help='whether to show statistic graphs', action='store_true')
|
||||
eval_parser.add_argument('--save', help='whether to save statistic graphs', action='store_true')
|
||||
eval_parser.add_argument('--verbose', help='verbosity of statistics', action='store_true')
|
||||
eval_parser.add_argument('--monocular', help='whether to train using the baseline', action='store_true')
|
||||
eval_parser.add_argument('--new', help='new', action='store_true')
|
||||
eval_parser.add_argument('--variance', help='evaluate keypoints variance', action='store_true')
|
||||
eval_parser.add_argument('--activity', help='evaluate activities', action='store_true')
|
||||
|
||||
eval_parser.add_argument('--net', help='Choose network: monoloco, monoloco_p, monoloco_pp, monstereo')
|
||||
eval_parser.add_argument('--baselines', help='whether to evaluate stereo baselines', action='store_true')
|
||||
eval_parser.add_argument('--generate_official', help='whether to add empty txt files for official evaluation',
|
||||
@ -149,15 +146,12 @@ def main():
|
||||
multiplier=args.multiplier, r_seed=args.r_seed)
|
||||
hyp_tuning.train(args)
|
||||
else:
|
||||
|
||||
from .train import Trainer
|
||||
training = Trainer(args)
|
||||
|
||||
_ = training.train()
|
||||
_ = training.evaluate()
|
||||
|
||||
elif args.command == 'eval':
|
||||
|
||||
if args.activity:
|
||||
from .eval.eval_activity import ActivityEvaluator
|
||||
evaluator = ActivityEvaluator(args)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user