update readme and compatibility
This commit is contained in:
parent
4992d4c34e
commit
5abd31839c
@ -149,13 +149,20 @@ data/kitti/images`
|
||||
|
||||
|
||||
### Annotations to preprocess
|
||||
MonStereo is trained using 2D human pose joints. To create them run pifaf over KITTI training images.
|
||||
You can create them running the predict script and using `--mode pifpaf`.
|
||||
MonStereo is trained using 2D human pose joints. To obtain the joints the first step is to run
|
||||
pifaf over KITTI training images, by either running the predict script and using `--mode pifpaf`,
|
||||
or by using pifpaf code directly.
|
||||
MonStereo preprocess script expects annotations from left and right images in 2 different folders
|
||||
with the same path apart from the suffix `_right` for the ``right" folder.
|
||||
For example `data/annotations` and `data/annotations_right`.
|
||||
Do not change name of json files created by pifpaf. For each left annotation,
|
||||
the code will look for the corresponding right annotation.
|
||||
|
||||
### Inputs joints for training
|
||||
MonoStereo is trained using 2D human pose joints matched with the ground truth location provided by
|
||||
KITTI Dataset. To create the joints run: `python3 -m monstereo.run prep` specifying:
|
||||
1. `--dir_ann` annotation directory containing Pifpaf joints of KITTI.
|
||||
|
||||
`--dir_ann` annotation directory containing Pifpaf joints of KITTI for the left images.
|
||||
|
||||
|
||||
### Ground truth file for evaluation
|
||||
|
||||
@ -24,10 +24,9 @@ from .transforms import flip_inputs, flip_labels, height_augmentation
|
||||
class PreprocessKitti:
|
||||
"""Prepare arrays with same format as nuScenes preprocessing but using ground truth txt files"""
|
||||
|
||||
# AV_W = 0.68
|
||||
# AV_L = 0.75
|
||||
# AV_H = 1.72
|
||||
# WLH_STD = 0.1
|
||||
dir_gt = os.path.join('data', 'kitti', 'gt')
|
||||
dir_images = '/data/lorenzo-data/kitti/original_images/training/image_2'
|
||||
dir_byc_l = '/data/lorenzo-data/kitti/object_detection/left'
|
||||
|
||||
# SOCIAL DISTANCING PARAMETERS
|
||||
THRESHOLD_DIST = 2 # Threshold to check distance of people
|
||||
@ -51,9 +50,6 @@ class PreprocessKitti:
|
||||
self.dir_ann = dir_ann
|
||||
self.iou_min = iou_min
|
||||
self.monocular = monocular
|
||||
self.dir_gt = os.path.join('data', 'kitti', 'gt')
|
||||
self.dir_images = '/data/lorenzo-data/kitti/original_images/training/image_2'
|
||||
self.dir_byc_l = '/data/lorenzo-data/kitti/object_detection/left'
|
||||
self.names_gt = tuple(os.listdir(self.dir_gt))
|
||||
self.dir_kk = os.path.join('data', 'kitti', 'calib')
|
||||
self.list_gt = glob.glob(self.dir_gt + '/*.txt')
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
|
||||
import argparse
|
||||
|
||||
from openpifpaf.network.factory import cli as openpifpaf_cli
|
||||
from openpifpaf.network import nets
|
||||
from openpifpaf import decoder
|
||||
|
||||
@ -41,8 +42,8 @@ def cli():
|
||||
predict_parser.add_argument('--dpi', help='image resolution', type=int, default=100)
|
||||
|
||||
# Pifpaf
|
||||
nets.cli(predict_parser)
|
||||
decoder.cli(predict_parser, force_complete_pose=True, instance_threshold=0.15)
|
||||
openpifpaf_cli(predict_parser)
|
||||
decoder.cli(predict_parser)
|
||||
predict_parser.add_argument('--scale', default=1.0, type=float, help='change the scale of the image to preprocess')
|
||||
|
||||
# Monoloco
|
||||
|
||||
@ -199,11 +199,11 @@ def factory_file(path_calib, dir_ann, basename, mode='left'):
|
||||
|
||||
if mode == 'left':
|
||||
kk, tt = p_left[:]
|
||||
path_ann = os.path.join(dir_ann, basename + '.png.pifpaf.json')
|
||||
path_ann = os.path.join(dir_ann, basename + '.png.predictions.json')
|
||||
|
||||
else:
|
||||
kk, tt = p_right[:]
|
||||
path_ann = os.path.join(dir_ann + '_right', basename + '.png.pifpaf.json')
|
||||
path_ann = os.path.join(dir_ann + '_right', basename + '.png.predictions.json')
|
||||
|
||||
from ..utils import open_annotations
|
||||
annotations = open_annotations(path_ann)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user