Working webcam and risen hand detection. (#46)

* Merged old monstereo

* Working webcam and risen hand detection

* Small fixes

* Update README.md

Pictures to be added later

* Added GIFs to README

* Improved risen hand detection and fixes

* Fixes

* Fixed for test

* printer.py cleanup

* fix

* fix

* fix

* Changes for pull request

* Fix

* Fixed for test

* Changed visualization

* Multi webcam support

* Update README.md

* Added README GIF

* Update README.md

* Better args and gif

* Typo

* Black theme

* Linting

* Fixes for the pull request

* Trailing whitespace fixed

* Better gif

* Deleted unused files

* Fixed error with no activity

* Fixed linting issue

* Correction on GIF

* Minor linting fix

* Minor change

* Revert change

* Removed unecessary check
This commit is contained in:
charlesbvll 2021-05-14 17:27:19 +02:00 committed by GitHub
parent 885fa98e4b
commit 67e908968f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 600 additions and 159 deletions

View File

@ -102,6 +102,28 @@ When processing KITTI images, the network uses the provided intrinsic matrix of
In all the other cases, we use the parameters of nuScenes cameras, with "1/1.8'' CMOS sensors of size 7.2 x 5.4 mm.
The default focal length is 5.7mm and this parameter can be modified using the argument `--focal`.
## Webcam
You can use the webcam as input by using the `--webcam` argument. By default the `--z_max` is set to 10 while using the webcam and the `--long-edge` is set to 144. If multiple webcams are plugged in you can choose between them using `--camera`, for instance to use the second camera you can add `--camera 1`.
we can see a few examples below, obtained we the following commands :
For the first and last visualization:
```
python -m monoloco.run predict \
--webcam \
--activities raise_hand
```
For the second one :
```
python -m monoloco.run predict \
--webcam \
--activities raise_hand social_distance
```
![webcam](docs/webcam.gif)
With `social_distance` in `--activities`, only the keypoints will be shown, with no image, allowing total anonimity.
## A) 3D Localization
**Ground-truth comparison** <br />
@ -165,7 +187,7 @@ python3 -m monoloco.run predict --glob docs/005523*.png \ --output_types multi \
![Occluded hard example](docs/out_005523.png.multi.jpg)
## B) Social Distancing (and Talking activity)
To visualize social distancing compliance, simply add the argument `--social-distance` to the predict command. This visualization is not supported with a stereo camera.
To visualize social distancing compliance, simply add the argument `social_distance` to `--activities`. This visualization is not supported with a stereo camera.
Threshold distance and radii (for F-formations) can be set using `--threshold-dist` and `--radii`, respectively.
For more info, run:
@ -180,13 +202,31 @@ To visualize social distancing run the below, command:
```sh
python -m monoloco.run predict docs/frame0032.jpg \
--social_distance --output_types front bird
--activities social_distance --output_types front bird
```
<img src="docs/out_frame0032_front_bird.jpg" width="700"/>
## C) Hand-raising detection
To detect raised hand, you can add `raise_hand` to `--activities`.
## C) Orientation and Bounding Box dimensions
For more info, run:
`python -m monoloco.run predict --help`
**Examples** <br>
The command below:
```
python -m monoloco.run predict .\docs\raising_hand.jpg \
--output_types front \
--activities raise_hand
```
Yields the following:
![raise_hand_taxi](docs/out_raising_hand.jpg.front.png)
## D) Orientation and Bounding Box dimensions
The network estimates orientation and box dimensions as well. Results are saved in a json file when using the command
`--output_types json`. At the moment, the only visualization including orientation is the social distancing one.
<br />
@ -411,4 +451,4 @@ When using this library in your research, we will be happy if you cite us!
month = {October},
year = {2019}
}
```
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

BIN
docs/raising_hand.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

BIN
docs/webcam.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 MiB

View File

@ -8,10 +8,11 @@ from contextlib import contextmanager
import numpy as np
import torch
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, FancyArrow
from .network.process import laplace_sampling
from .visuals.pifpaf_show import KeypointPainter, image_canvas
from .visuals.pifpaf_show import (
KeypointPainter, image_canvas, get_pifpaf_outputs, draw_orientation, social_distance_colors
)
def social_interactions(idx, centers, angles, dds, stds=None, social_distance=False,
@ -23,9 +24,11 @@ def social_interactions(idx, centers, angles, dds, stds=None, social_distance=Fa
# A) Check whether people are close together
xx = centers[idx][0]
zz = centers[idx][1]
distances = [math.sqrt((xx - centers[i][0]) ** 2 + (zz - centers[i][1]) ** 2) for i, _ in enumerate(centers)]
distances = [math.sqrt((xx - centers[i][0]) ** 2 + (zz - centers[i][1]) ** 2)
for i, _ in enumerate(centers)]
sorted_idxs = np.argsort(distances)
indices = [idx_t for idx_t in sorted_idxs[1:] if distances[idx_t] <= threshold_dist]
indices = [idx_t for idx_t in sorted_idxs[1:]
if distances[idx_t] <= threshold_dist]
# B) Check whether people are looking inwards and whether there are no intrusions
# Deterministic
@ -65,6 +68,56 @@ def social_interactions(idx, centers, angles, dds, stds=None, social_distance=Fa
return False
def is_raising_hand(kp):
"""
Returns flag of alert if someone raises their hand
"""
x=0
y=1
nose = 0
l_ear = 3
l_shoulder = 5
l_elbow = 7
l_hand = 9
r_ear = 4
r_shoulder = 6
r_elbow = 8
r_hand = 10
head_width = kp[x][l_ear]- kp[x][r_ear]
head_top = (kp[y][nose] - head_width)
l_forearm = [kp[x][l_hand] - kp[x][l_elbow], kp[y][l_hand] - kp[y][l_elbow]]
l_arm = [kp[x][l_shoulder] - kp[x][l_elbow], kp[y][l_shoulder] - kp[y][l_elbow]]
r_forearm = [kp[x][r_hand] - kp[x][r_elbow], kp[y][r_hand] - kp[y][r_elbow]]
r_arm = [kp[x][r_shoulder] - kp[x][r_elbow], kp[y][r_shoulder] - kp[y][r_elbow]]
l_angle = (90/np.pi) * np.arccos(np.dot(l_forearm/np.linalg.norm(l_forearm), l_arm/np.linalg.norm(l_arm)))
r_angle = (90/np.pi) * np.arccos(np.dot(r_forearm/np.linalg.norm(r_forearm), r_arm/np.linalg.norm(r_arm)))
is_l_up = kp[y][l_hand] < kp[y][l_shoulder]
is_r_up = kp[y][r_hand] < kp[y][r_shoulder]
l_too_close = kp[x][l_hand] <= kp[x][l_shoulder] and kp[y][l_hand]>=head_top
r_too_close = kp[x][r_hand] >= kp[x][r_shoulder] and kp[y][r_hand]>=head_top
is_left_risen = is_l_up and l_angle >= 30 and not l_too_close
is_right_risen = is_r_up and r_angle >= 30 and not r_too_close
if is_left_risen and is_right_risen:
return 'both'
if is_left_risen:
return 'left'
if is_right_risen:
return 'right'
return None
def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False):
"""
Check F-formations for people close together (this function do not expect far away people):
@ -73,7 +126,8 @@ def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False
"""
# Extract centers and angles
other_centers = np.array([cent for l, cent in enumerate(centers) if l not in (idx, idx_t)])
other_centers = np.array(
[cent for l, cent in enumerate(centers) if l not in (idx, idx_t)])
theta0 = angles[idx]
theta1 = angles[idx_t]
@ -92,15 +146,18 @@ def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False
# 1) Verify they are looking inwards.
# The distance between mus and the center should be less wrt the original position and the center
d_new = np.linalg.norm(mu_0 - mu_1) / 2 if social_distance else np.linalg.norm(mu_0 - mu_1)
d_new = np.linalg.norm(
mu_0 - mu_1) / 2 if social_distance else np.linalg.norm(mu_0 - mu_1)
d_0 = np.linalg.norm(x_0 - o_c)
d_1 = np.linalg.norm(x_1 - o_c)
# 2) Verify no intrusion for third parties
if other_centers.size:
other_distances = np.linalg.norm(other_centers - o_c.reshape(1, -1), axis=1)
other_distances = np.linalg.norm(
other_centers - o_c.reshape(1, -1), axis=1)
else:
other_distances = 100 * np.ones((1, 1)) # Condition verified if no other people
# Condition verified if no other people
other_distances = 100 * np.ones((1, 1))
# Binary Classification
# if np.min(other_distances) > radius: # Ablation without orientation
@ -109,18 +166,19 @@ def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False
return False
def show_social(args, image_t, output_path, annotations, dic_out):
def show_activities(args, image_t, output_path, annotations, dic_out):
"""Output frontal image with poses or combined with bird eye view"""
assert 'front' in args.output_types or 'bird' in args.output_types, "outputs allowed: front and/or bird"
colors = ['deepskyblue' for _ in dic_out['uv_heads']]
if 'social_distance' in args.activities:
colors = social_distance_colors(colors, dic_out)
angles = dic_out['angles']
stds = dic_out['stds_ale']
xz_centers = [[xx[0], xx[2]] for xx in dic_out['xyz_pred']]
# Prepare color for social distancing
colors = ['r' if flag else 'deepskyblue' for flag in dic_out['social_distance']]
# Draw keypoints and orientation
if 'front' in args.output_types:
keypoint_sets, _ = get_pifpaf_outputs(annotations)
@ -134,8 +192,11 @@ def show_social(args, image_t, output_path, annotations, dic_out):
show=args.show,
fig_width=10,
dpi_factor=1.0) as ax:
keypoint_painter.keypoints(ax, keypoint_sets, colors=colors)
draw_orientation(ax, uv_centers, sizes, angles, colors, mode='front')
keypoint_painter.keypoints(
ax, keypoint_sets, activities=args.activities, dic_out=dic_out,
size=image_t.size, colors=colors)
draw_orientation(ax, uv_centers, sizes,
angles, colors, mode='front')
if 'bird' in args.output_types:
z_max = min(args.z_max, 4 + max([el[1] for el in xz_centers]))
@ -144,21 +205,6 @@ def show_social(args, image_t, output_path, annotations, dic_out):
draw_uncertainty(ax1, xz_centers, stds)
def get_pifpaf_outputs(annotations):
# TODO extract direct from predictions with pifpaf 0.11+
"""Extract keypoints sets and scores from output dictionary"""
if not annotations:
return [], []
keypoints_sets = np.array([dic['keypoints'] for dic in annotations]).reshape((-1, 17, 3))
score_weights = np.ones((keypoints_sets.shape[0], 17))
score_weights[:, 3] = 3.0
score_weights /= np.sum(score_weights[0, :])
kps_scores = keypoints_sets[:, :, 2]
ordered_kps_scores = np.sort(kps_scores, axis=1)[:, ::-1]
scores = np.sum(score_weights * ordered_kps_scores, axis=1)
return keypoints_sets, scores
@contextmanager
def bird_canvas(output_path, z_max):
fig, ax = plt.subplots(1, 1)
@ -174,56 +220,6 @@ def bird_canvas(output_path, z_max):
print('Bird-eye-view image saved')
def draw_orientation(ax, centers, sizes, angles, colors, mode):
if mode == 'front':
length = 5
fill = False
alpha = 0.6
zorder_circle = 0.5
zorder_arrow = 5
linewidth = 1.5
edgecolor = 'k'
radiuses = [s / 1.2 for s in sizes]
else:
length = 1.3
head_width = 0.3
linewidth = 2
radiuses = [0.2] * len(centers)
# length = 1.6
# head_width = 0.4
# linewidth = 2.7
radiuses = [0.2] * len(centers)
fill = True
alpha = 1
zorder_circle = 2
zorder_arrow = 1
for idx, theta in enumerate(angles):
color = colors[idx]
radius = radiuses[idx]
if mode == 'front':
x_arr = centers[idx][0] + (length + radius) * math.cos(theta)
z_arr = length + centers[idx][1] + (length + radius) * math.sin(theta)
delta_x = math.cos(theta)
delta_z = math.sin(theta)
head_width = max(10, radiuses[idx] / 1.5)
else:
edgecolor = color
x_arr = centers[idx][0]
z_arr = centers[idx][1]
delta_x = length * math.cos(theta)
delta_z = - length * math.sin(theta) # keep into account kitti convention
circle = Circle(centers[idx], radius=radius, color=color, fill=fill, alpha=alpha, zorder=zorder_circle)
arrow = FancyArrow(x_arr, z_arr, delta_x, delta_z, head_width=head_width, edgecolor=edgecolor,
facecolor=color, linewidth=linewidth, zorder=zorder_arrow)
ax.add_patch(circle)
ax.add_patch(arrow)
def draw_uncertainty(ax, centers, stds):
for idx, std in enumerate(stds):
std = stds[idx]

View File

@ -16,7 +16,7 @@ from ..utils import get_iou_matches, reorder_matches, get_keypoints, pixel_to_ca
mask_joint_disparity
from .process import preprocess_monstereo, preprocess_monoloco, extract_outputs, extract_outputs_mono,\
filter_outputs, cluster_outputs, unnormalize_bi, laplace_sampling
from ..activity import social_interactions
from ..activity import social_interactions, is_raising_hand
from .architectures import MonolocoModel, LocoModel
@ -266,6 +266,12 @@ class Loco:
return dic_out
@staticmethod
def raising_hand(dic_out, keypoints):
dic_out['raising_hand'] = [is_raising_hand(keypoint) for keypoint in keypoints]
return dic_out
def median_disparity(dic_out, keypoints, keypoints_r, mask):
"""
Ablation study: whenever a matching is found, compute depth by median disparity instead of using MonSter

View File

@ -28,7 +28,7 @@ except ImportError:
from .visuals.printer import Printer
from .network import Loco
from .network.process import factory_for_gt, preprocess_pifpaf
from .activity import show_social
from .activity import show_activities
LOG = logging.getLogger(__name__)
@ -75,7 +75,7 @@ def download_checkpoints(args):
assert not args.social_distance, "Social distance not supported in stereo modality"
path = MONSTEREO_MODEL
name = 'monstereo-201202-1212.pkl'
elif args.social_distance:
elif ('social_distance' in args.activities) or args.webcam:
path = MONOLOCO_MODEL_NU
name = 'monoloco_pp-201207-1350.pkl'
else:
@ -167,14 +167,16 @@ def predict(args):
# data
data = datasets.ImageList(args.images, preprocess=preprocess)
if args.mode == 'stereo':
assert len(data.image_paths) % 2 == 0, "Odd number of images in a stereo setting"
assert len(
data.image_paths) % 2 == 0, "Odd number of images in a stereo setting"
data_loader = torch.utils.data.DataLoader(
data, batch_size=args.batch_size, shuffle=False,
pin_memory=False, collate_fn=datasets.collate_images_anns_meta)
for batch_i, (image_tensors_batch, _, meta_batch) in enumerate(data_loader):
pred_batch = processor.batch(pifpaf_model, image_tensors_batch, device=args.device)
pred_batch = processor.batch(
pifpaf_model, image_tensors_batch, device=args.device)
# unbatch (only for MonStereo)
for idx, (pred, meta) in enumerate(zip(pred_batch, meta_batch)):
@ -196,7 +198,8 @@ def predict(args):
output_path = os.path.join(splits[0], 'out_' + splits[1])
else:
file_name = os.path.basename(meta['file_name'])
output_path = os.path.join(args.output_directory, 'out_' + file_name)
output_path = os.path.join(
args.output_directory, 'out_' + file_name)
im_name = os.path.basename(meta['file_name'])
print(f'{batch_i} image {im_name} saved as {output_path}')
@ -208,23 +211,29 @@ def predict(args):
# 3D Predictions
if args.mode != 'keypoints':
im_size = (cpu_image.size[0], cpu_image.size[1]) # Original
kk, dic_gt = factory_for_gt(im_size, focal_length=args.focal, name=im_name, path_gt=args.path_gt)
kk, dic_gt = factory_for_gt(
im_size, focal_length=args.focal, name=im_name, path_gt=args.path_gt)
# Preprocess pifpaf outputs and run monoloco
boxes, keypoints = preprocess_pifpaf(pifpaf_outs['left'], im_size, enlarge_boxes=False)
boxes, keypoints = preprocess_pifpaf(
pifpaf_outs['left'], im_size, enlarge_boxes=False)
if args.mode == 'mono':
LOG.info("Prediction with MonoLoco++")
dic_out = net.forward(keypoints, kk)
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
if args.social_distance:
dic_out = net.post_process(
dic_out, boxes, keypoints, kk, dic_gt)
if 'social_distance' in args.activities:
dic_out = net.social_distance(dic_out, args)
if 'raise_hand' in args.activities:
dic_out = net.raising_hand(dic_out, keypoints)
else:
LOG.info("Prediction with MonStereo")
_, keypoints_r = preprocess_pifpaf(pifpaf_outs['right'], im_size)
dic_out = net.forward(keypoints, kk, keypoints_r=keypoints_r)
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
dic_out = net.post_process(
dic_out, boxes, keypoints, kk, dic_gt)
else:
dic_out = defaultdict(list)
@ -245,7 +254,7 @@ def factory_outputs(args, pifpaf_outs, dic_out, output_path, kk=None):
else:
assert 'json' in args.output_types or args.mode == 'keypoints', \
"No output saved, please select one among front, bird, multi, json, or pifpaf arguments"
if args.social_distance:
if 'social_distance' in args.activities:
assert args.mode == 'mono', "Social distancing only works with monocular network"
if args.mode == 'keypoints':
@ -256,8 +265,9 @@ def factory_outputs(args, pifpaf_outs, dic_out, output_path, kk=None):
if any((xx in args.output_types for xx in ['front', 'bird', 'multi'])):
LOG.info(output_path)
if args.social_distance:
show_social(args, pifpaf_outs['image'], output_path, pifpaf_outs['left'], dic_out)
if args.activities:
show_activities(
args, pifpaf_outs['image'], output_path, pifpaf_outs['left'], dic_out)
else:
printer = Printer(pifpaf_outs['image'], output_path, kk, args)
figures, axes = printer.factory_axes(dic_out)

View File

@ -20,11 +20,13 @@ def cli():
predict_parser.add_argument('--glob', help='glob expression for input images (for many images)')
predict_parser.add_argument('--checkpoint', help='pifpaf model')
predict_parser.add_argument('-o', '--output-directory', help='Output directory')
predict_parser.add_argument('--output_types', nargs='+', default=['json'],
predict_parser.add_argument('--output_types', nargs='+', default=['multi'],
help='what to output: json keypoints skeleton for Pifpaf'
'json bird front or multi for MonStereo')
predict_parser.add_argument('--no_save', help='to show images', action='store_true')
predict_parser.add_argument('--dpi', help='image resolution', type=int, default=150)
predict_parser.add_argument('--hide_distance', help='to not show the absolute distance of people from the camera',
default=False, action='store_true')
predict_parser.add_argument('--dpi', help='image resolution', type=int, default=150)
predict_parser.add_argument('--long-edge', default=None, type=int,
help='rescale the long side of the image (aspect ratio maintained)')
predict_parser.add_argument('--white-overlay',
@ -47,19 +49,24 @@ def cli():
show.cli(parser)
visualizer.cli(parser)
# Monoloco
predict_parser.add_argument('--activities', nargs='+', choices=['raise_hand', 'social_distance'],
help='Choose activities to show: social_distance, raise_hand', default=[])
predict_parser.add_argument('--mode', help='keypoints, mono, stereo', default='mono')
predict_parser.add_argument('--model', help='path of MonoLoco/MonStereo model to load')
predict_parser.add_argument('--net', help='only to select older MonoLoco model, otherwise use --mode')
predict_parser.add_argument('--path_gt', help='path of json file with gt 3d localization')
#default='data/arrays/names-kitti-200615-1022.json')
predict_parser.add_argument('--z_max', type=int, help='maximum meters distance for predictions', default=100)
predict_parser.add_argument('--n_dropout', type=int, help='Epistemic uncertainty evaluation', default=0)
predict_parser.add_argument('--dropout', type=float, help='dropout parameter', default=0.2)
predict_parser.add_argument('--show_all', help='only predict ground-truth matches or all', action='store_true')
predict_parser.add_argument('--webcam', help='monstereo streaming', action='store_true')
predict_parser.add_argument('--camera', help='device to use for webcam streaming', type=int, default=0)
predict_parser.add_argument('--focal', help='focal length in mm for a sensor size of 7.2x5.4 mm. (nuScenes)',
type=float, default=5.7)
# Social distancing and social interactions
predict_parser.add_argument('--social_distance', help='social', action='store_true')
predict_parser.add_argument('--threshold_prob', type=float, help='concordance for samples', default=0.25)
predict_parser.add_argument('--threshold_dist', type=float, help='min distance of people', default=2.5)
predict_parser.add_argument('--radii', type=tuple, help='o-space radii', default=(0.3, 0.5, 1))
@ -127,8 +134,12 @@ def cli():
def main():
args = cli()
if args.command == 'predict':
from .predict import predict
predict(args)
if args.webcam:
from .visuals.webcam import webcam
webcam(args)
else:
from .predict import predict
predict(args)
elif args.command == 'prep':
if 'nuscenes' in args.dataset:

View File

@ -6,16 +6,19 @@ and licensed under GNU AGPLv3
"""
from contextlib import contextmanager
import math
import numpy as np
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
try:
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, FancyArrow
import scipy.ndimage as ndimage
except ImportError:
ndimage = None
plt = None
COCO_PERSON_SKELETON = [
@ -71,15 +74,41 @@ def load_image(path, scale=1.0):
return image
def highlighted_arm(x, y, connection, color, lwidth, raise_hand, size=None):
c = color
linewidth = lwidth
width, height = (1,1)
if size:
width = size[0]
height = size[1]
l_arm_width = np.sqrt(((x[9]-x[7])/width)**2 + ((y[9]-y[7])/height)**2)*100
r_arm_width = np.sqrt(((x[10]-x[8])/width)**2 + ((y[10]-y[8])/height)**2)*100
if ((connection[0] == 5 and connection[1] == 7)
or (connection[0] == 7 and connection[1] == 9)) and raise_hand in ['left','both']:
c = 'yellow'
linewidth = l_arm_width
if ((connection[0] == 6 and connection[1] == 8)
or (connection[0] == 8 and connection[1] == 10)) and raise_hand in ['right', 'both']:
c = 'yellow'
linewidth = r_arm_width
return c, linewidth
class KeypointPainter:
def __init__(self, *,
skeleton=None,
xy_scale=1.0, highlight=None, highlight_invisible=False,
xy_scale=1.0, y_scale=1.0, highlight=None, highlight_invisible=False,
show_box=True, linewidth=2, markersize=3,
color_connections=False,
solid_threshold=0.5):
self.skeleton = skeleton or COCO_PERSON_SKELETON
self.xy_scale = xy_scale
self.y_scale = y_scale
self.highlight = highlight
self.highlight_invisible = highlight_invisible
self.show_box = show_box
@ -89,22 +118,29 @@ class KeypointPainter:
self.solid_threshold = solid_threshold
self.dashed_threshold = 0.1 # Patch to still allow force complete pose (set to zero to resume original)
def _draw_skeleton(self, ax, x, y, v, *, color=None):
def _draw_skeleton(self, ax, x, y, v, *, i=0, size=None, color=None, activities=None, dic_out=None):
if not np.any(v > 0):
return
if self.skeleton is not None:
for ci, connection in enumerate(np.array(self.skeleton) - 1):
c = color
linewidth = self.linewidth
if 'raise_hand' in activities:
c, linewidth = highlighted_arm(x, y, connection, c, linewidth,
dic_out['raising_hand'][:][i], size=size)
if self.color_connections:
c = matplotlib.cm.get_cmap('tab20')(ci / len(self.skeleton))
if np.all(v[connection] > self.dashed_threshold):
ax.plot(x[connection], y[connection],
linewidth=self.linewidth, color=c,
linewidth=linewidth, color=c,
linestyle='dashed', dash_capstyle='round')
if np.all(v[connection] > self.solid_threshold):
ax.plot(x[connection], y[connection],
linewidth=self.linewidth, color=c, solid_capstyle='round')
linewidth=linewidth, color=c, solid_capstyle='round')
# highlight invisible keypoints
inv_color = 'k' if self.highlight_invisible else color
@ -145,7 +181,7 @@ class KeypointPainter:
ax.text(x1, y1, '{:.4f}'.format(score), fontsize=8, color=color)
@staticmethod
def _draw_text(ax, x, y, v, text, color):
def _draw_text(ax, x, y, v, text, color, fontsize=8):
if not np.any(v > 0):
return
@ -159,7 +195,7 @@ class KeypointPainter:
y1 -= 2.0
y2 += 2.0
ax.text(x1 + 2, y1 - 2, text, fontsize=8,
ax.text(x1 + 2, y1 - 2, text, fontsize=fontsize,
color='white', bbox={'facecolor': color, 'alpha': 0.5, 'linewidth': 0})
@staticmethod
@ -171,7 +207,9 @@ class KeypointPainter:
matplotlib.patches.Rectangle(
(x - scale, y - scale), 2 * scale, 2 * scale, fill=False, color=color))
def keypoints(self, ax, keypoint_sets, *, scores=None, color=None, colors=None, texts=None):
def keypoints(self, ax, keypoint_sets, *,
size=None, scores=None, color=None,
colors=None, texts=None, activities=None, dic_out=None):
if keypoint_sets is None:
return
@ -183,7 +221,7 @@ class KeypointPainter:
for i, kps in enumerate(np.asarray(keypoint_sets)):
assert kps.shape[1] == 3
x = kps[:, 0] * self.xy_scale
y = kps[:, 1] * self.xy_scale
y = kps[:, 1] * self.xy_scale * self.y_scale
v = kps[:, 2]
if colors is not None:
@ -192,7 +230,13 @@ class KeypointPainter:
if isinstance(color, (int, np.integer)):
color = matplotlib.cm.get_cmap('tab20')((color % 20 + 0.05) / 20)
self._draw_skeleton(ax, x, y, v, color=color)
self._draw_skeleton(ax, x, y, v, i=i, size=size, color=color, activities=activities, dic_out=dic_out)
score = scores[i] if scores is not None else None
if score is not None:
z_str = str(score).split(sep='.')
text = z_str[0] + '.' + z_str[1][0]
self._draw_text(ax, x[1:3], y[1:3]-5, v[1:3], text, color, fontsize=16)
if self.show_box:
score = scores[i] if scores is not None else None
self._draw_box(ax, x, y, v, color, score)
@ -336,3 +380,78 @@ def white_screen(ax, alpha=0.9):
plt.Rectangle((0, 0), 1, 1, transform=ax.transAxes, alpha=alpha,
facecolor='white')
)
def get_pifpaf_outputs(annotations):
# TODO extract direct from predictions with pifpaf 0.11+
"""Extract keypoints sets and scores from output dictionary"""
if not annotations:
return [], []
keypoints_sets = np.array([dic['keypoints']
for dic in annotations]).reshape((-1, 17, 3))
score_weights = np.ones((keypoints_sets.shape[0], 17))
score_weights[:, 3] = 3.0
score_weights /= np.sum(score_weights[0, :])
kps_scores = keypoints_sets[:, :, 2]
ordered_kps_scores = np.sort(kps_scores, axis=1)[:, ::-1]
scores = np.sum(score_weights * ordered_kps_scores, axis=1)
return keypoints_sets, scores
def draw_orientation(ax, centers, sizes, angles, colors, mode):
if mode == 'front':
length = 5
fill = False
alpha = 0.6
zorder_circle = 0.5
zorder_arrow = 5
linewidth = 1.5
edgecolor = 'k'
radiuses = [s / 1.2 for s in sizes]
else:
length = 1.3
head_width = 0.3
linewidth = 2
radiuses = [0.2] * len(centers)
# length = 1.6
# head_width = 0.4
# linewidth = 2.7
radiuses = [0.2] * len(centers)
fill = True
alpha = 1
zorder_circle = 2
zorder_arrow = 1
for idx, theta in enumerate(angles):
color = colors[idx]
radius = radiuses[idx]
if mode == 'front':
x_arr = centers[idx][0] + (length + radius) * math.cos(theta)
z_arr = length + centers[idx][1] + \
(length + radius) * math.sin(theta)
delta_x = math.cos(theta)
delta_z = math.sin(theta)
head_width = max(10, radiuses[idx] / 1.5)
else:
edgecolor = color
x_arr = centers[idx][0]
z_arr = centers[idx][1]
delta_x = length * math.cos(theta)
# keep into account kitti convention
delta_z = - length * math.sin(theta)
circle = Circle(centers[idx], radius=radius, color=color,
fill=fill, alpha=alpha, zorder=zorder_circle)
arrow = FancyArrow(x_arr, z_arr, delta_x, delta_z, head_width=head_width, edgecolor=edgecolor,
facecolor=color, linewidth=linewidth, zorder=zorder_arrow)
ax.add_patch(circle)
ax.add_patch(arrow)
def social_distance_colors(colors, dic_out):
# Prepare color for social distancing
colors = ['r' if flag else colors[idx] for idx,flag in enumerate(dic_out['social_distance'])]
return colors

View File

@ -8,6 +8,7 @@ from collections import OrderedDict
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from .pifpaf_show import KeypointPainter, get_pifpaf_outputs, draw_orientation, social_distance_colors
from ..utils import pixel_to_camera
@ -51,7 +52,6 @@ class Printer:
boxes_gt, uv_camera, radius, auxs = nones(16)
def __init__(self, image, output_path, kk, args):
self.im = image
self.width = self.im.size[0]
self.height = self.im.size[1]
@ -59,21 +59,27 @@ class Printer:
self.kk = kk
self.output_types = args.output_types
self.z_max = args.z_max # set max distance to show instances
self.show = args.show
self.show_all = args.show_all
self.save = not args.no_save
self.webcam = args.webcam
self.show_all = args.show_all or self.webcam
self.show = args.show_all or self.webcam
self.save = not args.no_save and not self.webcam
self.plt_close = not self.webcam
self.activities = args.activities
self.hide_distance = args.hide_distance
# define image attributes
self.attr = image_attributes(args.dpi, args.output_types)
def _process_results(self, dic_ann):
# Include the vectors inside the interval given by z_max
self.angles = dic_ann['angles']
self.stds_ale = dic_ann['stds_ale']
self.stds_epi = dic_ann['stds_epi']
self.gt = dic_ann['gt'] # regulate ground-truth matching
self.xx_gt = [xx[0] for xx in dic_ann['xyz_real']]
self.xx_pred = [xx[0] for xx in dic_ann['xyz_pred']]
self.xz_centers = [[xx[0], xx[2]] for xx in dic_ann['xyz_pred']]
# Set maximum distance
self.dd_pred = dic_ann['dds_pred']
self.dd_real = dic_ann['dds_real']
@ -86,6 +92,10 @@ class Printer:
for idx, xx in enumerate(dic_ann['xyz_pred'])]
self.uv_heads = dic_ann['uv_heads']
self.centers = self.uv_heads
if 'multi' in self.output_types:
for center in self.centers:
center[1] = center[1] * self.y_scale
self.uv_shoulders = dic_ann['uv_shoulders']
self.boxes = dic_ann['boxes']
self.boxes_gt = dic_ann['boxes_gt']
@ -103,11 +113,15 @@ class Printer:
def factory_axes(self, dic_out):
"""Create axes for figures: front bird multi"""
plt.style.use('dark_background')
axes = []
figures = []
# Process the annotation dictionary of monoloco
self._process_results(dic_out)
if dic_out:
self._process_results(dic_out)
# Initialize multi figure, resizing it for aesthetic proportion
if 'multi' in self.output_types:
@ -129,6 +143,7 @@ class Printer:
fig, (ax0, ax1) = plt.subplots(1, 2, sharey=False, gridspec_kw={'width_ratios': [width_ratio, 1]},
figsize=(fig_width, fig_height))
ax1.set_aspect(fig_ar_1)
fig.set_tight_layout(True)
fig.subplots_adjust(left=0.02, right=0.98, bottom=0, top=1, hspace=0, wspace=0.02)
@ -165,7 +180,58 @@ class Printer:
axes.append(ax1)
return figures, axes
def draw(self, figures, axes, image):
def _webcam_front(self, axis, colors, activities, annotations, dic_out):
sizes = [abs(self.centers[idx][1] - uv_s[1]*self.y_scale) / 1.5 for idx, uv_s in
enumerate(self.uv_shoulders)]
keypoint_sets, _ = get_pifpaf_outputs(annotations)
keypoint_painter = KeypointPainter(show_box=False, y_scale=self.y_scale)
if not self.hide_distance:
scores = self.dd_pred
else:
scores=None
keypoint_painter.keypoints(
axis, keypoint_sets, size=self.im.size,
scores=scores, colors=colors, activities=activities, dic_out=dic_out)
draw_orientation(axis, self.centers,
sizes, self.angles, colors, mode='front')
def _front_loop(self, iterator, axes, number, colors, annotations, dic_out):
for idx in iterator:
if any(xx in self.output_types for xx in ['front', 'multi']) and self.zz_pred[idx] > 0:
if self.webcam:
self._webcam_front(axes[0], colors, self.activities, annotations, dic_out)
else:
self._draw_front(axes[0],
self.dd_pred[idx],
idx,
number)
number['num'] += 1
def _bird_loop(self, iterator, axes, colors, number):
for idx in iterator:
if any(xx in self.output_types for xx in ['bird', 'multi']) and self.zz_pred[idx] > 0:
draw_orientation(axes[1], self.xz_centers, [], self.angles, colors, mode='bird')
# Draw ground truth and uncertainty
self._draw_uncertainty(axes, idx)
# Draw bird eye view text
if number['flag']:
self._draw_text_bird(axes, idx, number['num'])
number['num'] += 1
def draw(self, figures, axes, image, dic_out=None, annotations=None):
colors = ['deepskyblue' for _ in self.uv_heads]
if 'social_distance' in self.activities:
colors = social_distance_colors(colors, dic_out)
# whether to include instances that don't match the ground-truth
iterator = range(len(self.zz_pred)) if self.show_all else range(len(self.zz_gt))
@ -176,27 +242,16 @@ class Printer:
number = dict(flag=False, num=97)
if any(xx in self.output_types for xx in ['front', 'multi']):
number['flag'] = True # add numbers
self.mpl_im0.set_data(image)
for idx in iterator:
if any(xx in self.output_types for xx in ['front', 'multi']) and self.zz_pred[idx] > 0:
self._draw_front(axes[0],
self.dd_pred[idx],
idx,
number)
number['num'] += 1
# Remove image if social distance is activated
if 'social_distance' not in self.activities:
self.mpl_im0.set_data(image)
self._front_loop(iterator, axes, number, colors, annotations, dic_out)
# Draw the bird figure
number['num'] = 97
for idx in iterator:
if any(xx in self.output_types for xx in ['bird', 'multi']) and self.zz_pred[idx] > 0:
self._bird_loop(iterator, axes, colors, number)
# Draw ground truth and uncertainty
self._draw_uncertainty(axes, idx)
# Draw bird eye view text
if number['flag']:
self._draw_text_bird(axes, idx, number['num'])
number['num'] += 1
self._draw_legend(axes)
# Draw, save or/and show the figures
@ -206,7 +261,9 @@ class Printer:
fig.savefig(self.output_path + self.extensions[idx], bbox_inches='tight', dpi=self.attr['dpi'])
if self.show:
fig.show()
plt.close(fig)
if self.plt_close:
plt.close(fig)
def _draw_front(self, ax, z, idx, number):
@ -230,23 +287,24 @@ class Printer:
x_t = x0 - 1.5
y_t = y1 + self.attr['y_box_margin']
if y_t < (self.height-10):
ax.annotate(
text,
(x_t, y_t),
fontsize=self.attr['fontsize_d'],
weight='bold',
xytext=(5.0, 5.0),
textcoords='offset points',
color='white',
bbox=bbox_config,
)
if number['flag']:
ax.text(x0 - 17,
y1 + 14,
chr(number['num']),
fontsize=self.attr['fontsize_num'],
color=self.attr[self.modes[idx]]['numcolor'],
weight='bold')
if not self.hide_distance:
ax.annotate(
text,
(x_t, y_t),
fontsize=self.attr['fontsize_d'],
weight='bold',
xytext=(5.0, 5.0),
textcoords='offset points',
color='white',
bbox=bbox_config,
)
if number['flag']:
ax.text(x0 - 17,
y1 + 14,
chr(number['num']),
fontsize=self.attr['fontsize_num'],
color=self.attr[self.modes[idx]]['numcolor'],
weight='bold')
def _draw_text_bird(self, axes, idx, num):
"""Plot the number in the bird eye view map"""
@ -360,20 +418,23 @@ class Printer:
ax.set_axis_off()
ax.set_xlim(0, self.width)
ax.set_ylim(self.height, 0)
self.mpl_im0 = ax.imshow(self.im)
if not self.activities or 'social_distance' not in self.activities:
self.mpl_im0 = ax.imshow(self.im)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
else:
uv_max = [0., float(self.height)]
xyz_max = pixel_to_camera(uv_max, self.kk, self.z_max)
x_max = abs(xyz_max[0]) # shortcut to avoid oval circles in case of different kk
x_max = abs(xyz_max[0]) # shortcut to avoid oval circles in case of different kk
corr = round(float(x_max / 3))
ax.plot([0, x_max], [0, self.z_max], 'k--')
ax.plot([0, -x_max], [0, self.z_max], 'k--')
ax.plot([0, x_max], [0, self.z_max], 'w--')
ax.plot([0, -x_max], [0, self.z_max], 'w--')
ax.set_xlim(-x_max + corr, x_max - corr)
ax.set_ylim(0, self.z_max + 1)
ax.set_xlabel("X [m]")
ax.set_box_aspect(.8)
plt.xlim((-x_max, x_max))
plt.xticks(fontsize=self.attr['fontsize_ax'])
plt.yticks(fontsize=self.attr['fontsize_ax'])
return ax

198
monoloco/visuals/webcam.py Normal file
View File

@ -0,0 +1,198 @@
# pylint: disable=W0212
"""
Webcam demo application
Implementation adapted from https://github.com/vita-epfl/openpifpaf/blob/master/openpifpaf/webcam.py
"""
import time
import logging
import torch
import matplotlib.pyplot as plt
from PIL import Image
try:
import cv2
except ImportError:
cv2 = None
from openpifpaf import decoder, network, visualizer, show, logger
import openpifpaf.datasets as datasets
from openpifpaf.predict import processor_factory, preprocess_factory
from ..visuals import Printer
from ..network import Loco
from ..network.process import preprocess_pifpaf, factory_for_gt
from ..predict import download_checkpoints
LOG = logging.getLogger(__name__)
def factory_from_args(args):
# Model
dic_models = download_checkpoints(args)
args.checkpoint = dic_models['keypoints']
logger.configure(args, LOG) # logger first
assert len(args.output_types) == 1 and 'json' not in args.output_types
# Devices
args.device = torch.device('cpu')
args.pin_memory = False
if torch.cuda.is_available():
args.device = torch.device('cuda')
args.pin_memory = True
LOG.debug('neural network device: %s', args.device)
# Add visualization defaults
args.figure_width = 10
args.dpi_factor = 1.0
args.z_max = 10
args.show_all = True
args.no_save = True
args.batch_size = 1
if args.long_edge is None:
args.long_edge = 144
# Make default pifpaf argument
args.force_complete_pose = True
LOG.info("Force complete pose is active")
# Configure
decoder.configure(args)
network.Factory.configure(args)
show.configure(args)
visualizer.configure(args)
return args, dic_models
def webcam(args):
assert args.mode in 'mono'
args, dic_models = factory_from_args(args)
# Load Models
net = Loco(model=dic_models[args.mode], mode=args.mode, device=args.device,
n_dropout=args.n_dropout, p_dropout=args.dropout)
processor, pifpaf_model = processor_factory(args)
preprocess = preprocess_factory(args)
# Start recording
cam = cv2.VideoCapture(args.camera)
visualizer_mono = None
while True:
start = time.time()
ret, frame = cam.read()
scale = (args.long_edge)/frame.shape[0]
image = cv2.resize(frame, None, fx=scale, fy=scale)
height, width, _ = image.shape
print('resized image size: {}'.format(image.shape))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
data = datasets.PilImageList(
[pil_image], preprocess=preprocess)
data_loader = torch.utils.data.DataLoader(
data, batch_size=1, shuffle=False,
pin_memory=False, collate_fn=datasets.collate_images_anns_meta)
for (image_tensors_batch, _, meta_batch) in data_loader:
pred_batch = processor.batch(
pifpaf_model, image_tensors_batch, device=args.device)
for idx, (pred, meta) in enumerate(zip(pred_batch, meta_batch)):
pred = [ann.inverse_transform(meta) for ann in pred]
if idx == 0:
pifpaf_outs = {
'pred': pred,
'left': [ann.json_data() for ann in pred],
'image': image}
if not ret:
break
key = cv2.waitKey(1)
if key % 256 == 27:
# ESC pressed
print("Escape hit, closing...")
break
kk, dic_gt = factory_for_gt(pil_image.size, focal_length=args.focal)
boxes, keypoints = preprocess_pifpaf(
pifpaf_outs['left'], (width, height))
dic_out = net.forward(keypoints, kk)
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
if 'social_distance' in args.activities:
dic_out = net.social_distance(dic_out, args)
if 'raise_hand' in args.activities:
dic_out = net.raising_hand(dic_out, keypoints)
if visualizer_mono is None: # it is, at the beginning
visualizer_mono = Visualizer(kk, args)(pil_image) # create it with the first image
visualizer_mono.send(None)
print(dic_out)
visualizer_mono.send((pil_image, dic_out, pifpaf_outs))
end = time.time()
print("run-time: {:.2f} ms".format((end-start)*1000))
cam.release()
cv2.destroyAllWindows()
class Visualizer:
def __init__(self, kk, args):
self.kk = kk
self.args = args
def __call__(self, first_image, fig_width=1.0, **kwargs):
if 'figsize' not in kwargs:
kwargs['figsize'] = (fig_width, fig_width *
first_image.size[0] / first_image.size[1])
printer = Printer(first_image, output_path="",
kk=self.kk, args=self.args)
figures, axes = printer.factory_axes(None)
for fig in figures:
fig.show()
while True:
image, dic_out, pifpaf_outs = yield
# Clears previous annotations between frames
axes[0].patches = []
axes[0].lines = []
axes[0].texts = []
if len(axes) > 1:
axes[1].patches = []
axes[1].lines = [axes[1].lines[0], axes[1].lines[1]]
axes[1].texts = []
if dic_out and dic_out['dds_pred']:
printer._process_results(dic_out)
printer.draw(figures, axes, image, dic_out, pifpaf_outs['left'])
mypause(0.01)
def mypause(interval):
manager = plt._pylab_helpers.Gcf.get_active()
if manager is not None:
canvas = manager.canvas
if canvas.figure.stale:
canvas.draw_idle()
canvas.start_event_loop(interval)
else:
time.sleep(interval)

View File

@ -33,7 +33,7 @@ PREDICT_COMMAND_SOCIAL_DISTANCE = [
'python3', '-m', 'monoloco.run',
'predict',
'docs/frame0032.jpg',
'--social_distance',
'--activities', 'social_distance',
'--output_types', 'front', 'bird',
'--decoder-workers=0' # for windows'
]