Working webcam and risen hand detection. (#46)
* Merged old monstereo * Working webcam and risen hand detection * Small fixes * Update README.md Pictures to be added later * Added GIFs to README * Improved risen hand detection and fixes * Fixes * Fixed for test * printer.py cleanup * fix * fix * fix * Changes for pull request * Fix * Fixed for test * Changed visualization * Multi webcam support * Update README.md * Added README GIF * Update README.md * Better args and gif * Typo * Black theme * Linting * Fixes for the pull request * Trailing whitespace fixed * Better gif * Deleted unused files * Fixed error with no activity * Fixed linting issue * Correction on GIF * Minor linting fix * Minor change * Revert change * Removed unecessary check
This commit is contained in:
parent
885fa98e4b
commit
67e908968f
48
README.md
48
README.md
@ -102,6 +102,28 @@ When processing KITTI images, the network uses the provided intrinsic matrix of
|
||||
In all the other cases, we use the parameters of nuScenes cameras, with "1/1.8'' CMOS sensors of size 7.2 x 5.4 mm.
|
||||
The default focal length is 5.7mm and this parameter can be modified using the argument `--focal`.
|
||||
|
||||
## Webcam
|
||||
|
||||
You can use the webcam as input by using the `--webcam` argument. By default the `--z_max` is set to 10 while using the webcam and the `--long-edge` is set to 144. If multiple webcams are plugged in you can choose between them using `--camera`, for instance to use the second camera you can add `--camera 1`.
|
||||
we can see a few examples below, obtained we the following commands :
|
||||
|
||||
For the first and last visualization:
|
||||
```
|
||||
python -m monoloco.run predict \
|
||||
--webcam \
|
||||
--activities raise_hand
|
||||
```
|
||||
For the second one :
|
||||
```
|
||||
python -m monoloco.run predict \
|
||||
--webcam \
|
||||
--activities raise_hand social_distance
|
||||
```
|
||||
|
||||

|
||||
|
||||
With `social_distance` in `--activities`, only the keypoints will be shown, with no image, allowing total anonimity.
|
||||
|
||||
## A) 3D Localization
|
||||
|
||||
**Ground-truth comparison** <br />
|
||||
@ -165,7 +187,7 @@ python3 -m monoloco.run predict --glob docs/005523*.png \ --output_types multi \
|
||||

|
||||
|
||||
## B) Social Distancing (and Talking activity)
|
||||
To visualize social distancing compliance, simply add the argument `--social-distance` to the predict command. This visualization is not supported with a stereo camera.
|
||||
To visualize social distancing compliance, simply add the argument `social_distance` to `--activities`. This visualization is not supported with a stereo camera.
|
||||
Threshold distance and radii (for F-formations) can be set using `--threshold-dist` and `--radii`, respectively.
|
||||
|
||||
For more info, run:
|
||||
@ -180,13 +202,31 @@ To visualize social distancing run the below, command:
|
||||
|
||||
```sh
|
||||
python -m monoloco.run predict docs/frame0032.jpg \
|
||||
--social_distance --output_types front bird
|
||||
--activities social_distance --output_types front bird
|
||||
```
|
||||
|
||||
<img src="docs/out_frame0032_front_bird.jpg" width="700"/>
|
||||
|
||||
## C) Hand-raising detection
|
||||
To detect raised hand, you can add `raise_hand` to `--activities`.
|
||||
|
||||
## C) Orientation and Bounding Box dimensions
|
||||
For more info, run:
|
||||
`python -m monoloco.run predict --help`
|
||||
|
||||
**Examples** <br>
|
||||
|
||||
The command below:
|
||||
```
|
||||
python -m monoloco.run predict .\docs\raising_hand.jpg \
|
||||
--output_types front \
|
||||
--activities raise_hand
|
||||
```
|
||||
Yields the following:
|
||||
|
||||

|
||||
|
||||
|
||||
## D) Orientation and Bounding Box dimensions
|
||||
The network estimates orientation and box dimensions as well. Results are saved in a json file when using the command
|
||||
`--output_types json`. At the moment, the only visualization including orientation is the social distancing one.
|
||||
<br />
|
||||
@ -411,4 +451,4 @@ When using this library in your research, we will be happy if you cite us!
|
||||
month = {October},
|
||||
year = {2019}
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
BIN
docs/out_raising_hand.jpg.front.png
Normal file
BIN
docs/out_raising_hand.jpg.front.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 88 KiB |
BIN
docs/raising_hand.jpg
Normal file
BIN
docs/raising_hand.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 51 KiB |
BIN
docs/webcam.gif
Normal file
BIN
docs/webcam.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 6.2 MiB |
@ -8,10 +8,11 @@ from contextlib import contextmanager
|
||||
import numpy as np
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Circle, FancyArrow
|
||||
|
||||
from .network.process import laplace_sampling
|
||||
from .visuals.pifpaf_show import KeypointPainter, image_canvas
|
||||
from .visuals.pifpaf_show import (
|
||||
KeypointPainter, image_canvas, get_pifpaf_outputs, draw_orientation, social_distance_colors
|
||||
)
|
||||
|
||||
|
||||
def social_interactions(idx, centers, angles, dds, stds=None, social_distance=False,
|
||||
@ -23,9 +24,11 @@ def social_interactions(idx, centers, angles, dds, stds=None, social_distance=Fa
|
||||
# A) Check whether people are close together
|
||||
xx = centers[idx][0]
|
||||
zz = centers[idx][1]
|
||||
distances = [math.sqrt((xx - centers[i][0]) ** 2 + (zz - centers[i][1]) ** 2) for i, _ in enumerate(centers)]
|
||||
distances = [math.sqrt((xx - centers[i][0]) ** 2 + (zz - centers[i][1]) ** 2)
|
||||
for i, _ in enumerate(centers)]
|
||||
sorted_idxs = np.argsort(distances)
|
||||
indices = [idx_t for idx_t in sorted_idxs[1:] if distances[idx_t] <= threshold_dist]
|
||||
indices = [idx_t for idx_t in sorted_idxs[1:]
|
||||
if distances[idx_t] <= threshold_dist]
|
||||
|
||||
# B) Check whether people are looking inwards and whether there are no intrusions
|
||||
# Deterministic
|
||||
@ -65,6 +68,56 @@ def social_interactions(idx, centers, angles, dds, stds=None, social_distance=Fa
|
||||
return False
|
||||
|
||||
|
||||
def is_raising_hand(kp):
|
||||
"""
|
||||
Returns flag of alert if someone raises their hand
|
||||
"""
|
||||
x=0
|
||||
y=1
|
||||
|
||||
nose = 0
|
||||
l_ear = 3
|
||||
l_shoulder = 5
|
||||
l_elbow = 7
|
||||
l_hand = 9
|
||||
r_ear = 4
|
||||
r_shoulder = 6
|
||||
r_elbow = 8
|
||||
r_hand = 10
|
||||
|
||||
head_width = kp[x][l_ear]- kp[x][r_ear]
|
||||
head_top = (kp[y][nose] - head_width)
|
||||
|
||||
l_forearm = [kp[x][l_hand] - kp[x][l_elbow], kp[y][l_hand] - kp[y][l_elbow]]
|
||||
l_arm = [kp[x][l_shoulder] - kp[x][l_elbow], kp[y][l_shoulder] - kp[y][l_elbow]]
|
||||
|
||||
r_forearm = [kp[x][r_hand] - kp[x][r_elbow], kp[y][r_hand] - kp[y][r_elbow]]
|
||||
r_arm = [kp[x][r_shoulder] - kp[x][r_elbow], kp[y][r_shoulder] - kp[y][r_elbow]]
|
||||
|
||||
l_angle = (90/np.pi) * np.arccos(np.dot(l_forearm/np.linalg.norm(l_forearm), l_arm/np.linalg.norm(l_arm)))
|
||||
r_angle = (90/np.pi) * np.arccos(np.dot(r_forearm/np.linalg.norm(r_forearm), r_arm/np.linalg.norm(r_arm)))
|
||||
|
||||
is_l_up = kp[y][l_hand] < kp[y][l_shoulder]
|
||||
is_r_up = kp[y][r_hand] < kp[y][r_shoulder]
|
||||
|
||||
l_too_close = kp[x][l_hand] <= kp[x][l_shoulder] and kp[y][l_hand]>=head_top
|
||||
r_too_close = kp[x][r_hand] >= kp[x][r_shoulder] and kp[y][r_hand]>=head_top
|
||||
|
||||
is_left_risen = is_l_up and l_angle >= 30 and not l_too_close
|
||||
is_right_risen = is_r_up and r_angle >= 30 and not r_too_close
|
||||
|
||||
if is_left_risen and is_right_risen:
|
||||
return 'both'
|
||||
|
||||
if is_left_risen:
|
||||
return 'left'
|
||||
|
||||
if is_right_risen:
|
||||
return 'right'
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False):
|
||||
"""
|
||||
Check F-formations for people close together (this function do not expect far away people):
|
||||
@ -73,7 +126,8 @@ def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False
|
||||
"""
|
||||
|
||||
# Extract centers and angles
|
||||
other_centers = np.array([cent for l, cent in enumerate(centers) if l not in (idx, idx_t)])
|
||||
other_centers = np.array(
|
||||
[cent for l, cent in enumerate(centers) if l not in (idx, idx_t)])
|
||||
theta0 = angles[idx]
|
||||
theta1 = angles[idx_t]
|
||||
|
||||
@ -92,15 +146,18 @@ def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False
|
||||
|
||||
# 1) Verify they are looking inwards.
|
||||
# The distance between mus and the center should be less wrt the original position and the center
|
||||
d_new = np.linalg.norm(mu_0 - mu_1) / 2 if social_distance else np.linalg.norm(mu_0 - mu_1)
|
||||
d_new = np.linalg.norm(
|
||||
mu_0 - mu_1) / 2 if social_distance else np.linalg.norm(mu_0 - mu_1)
|
||||
d_0 = np.linalg.norm(x_0 - o_c)
|
||||
d_1 = np.linalg.norm(x_1 - o_c)
|
||||
|
||||
# 2) Verify no intrusion for third parties
|
||||
if other_centers.size:
|
||||
other_distances = np.linalg.norm(other_centers - o_c.reshape(1, -1), axis=1)
|
||||
other_distances = np.linalg.norm(
|
||||
other_centers - o_c.reshape(1, -1), axis=1)
|
||||
else:
|
||||
other_distances = 100 * np.ones((1, 1)) # Condition verified if no other people
|
||||
# Condition verified if no other people
|
||||
other_distances = 100 * np.ones((1, 1))
|
||||
|
||||
# Binary Classification
|
||||
# if np.min(other_distances) > radius: # Ablation without orientation
|
||||
@ -109,18 +166,19 @@ def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False
|
||||
return False
|
||||
|
||||
|
||||
def show_social(args, image_t, output_path, annotations, dic_out):
|
||||
def show_activities(args, image_t, output_path, annotations, dic_out):
|
||||
"""Output frontal image with poses or combined with bird eye view"""
|
||||
|
||||
assert 'front' in args.output_types or 'bird' in args.output_types, "outputs allowed: front and/or bird"
|
||||
|
||||
colors = ['deepskyblue' for _ in dic_out['uv_heads']]
|
||||
if 'social_distance' in args.activities:
|
||||
colors = social_distance_colors(colors, dic_out)
|
||||
|
||||
angles = dic_out['angles']
|
||||
stds = dic_out['stds_ale']
|
||||
xz_centers = [[xx[0], xx[2]] for xx in dic_out['xyz_pred']]
|
||||
|
||||
# Prepare color for social distancing
|
||||
colors = ['r' if flag else 'deepskyblue' for flag in dic_out['social_distance']]
|
||||
|
||||
# Draw keypoints and orientation
|
||||
if 'front' in args.output_types:
|
||||
keypoint_sets, _ = get_pifpaf_outputs(annotations)
|
||||
@ -134,8 +192,11 @@ def show_social(args, image_t, output_path, annotations, dic_out):
|
||||
show=args.show,
|
||||
fig_width=10,
|
||||
dpi_factor=1.0) as ax:
|
||||
keypoint_painter.keypoints(ax, keypoint_sets, colors=colors)
|
||||
draw_orientation(ax, uv_centers, sizes, angles, colors, mode='front')
|
||||
keypoint_painter.keypoints(
|
||||
ax, keypoint_sets, activities=args.activities, dic_out=dic_out,
|
||||
size=image_t.size, colors=colors)
|
||||
draw_orientation(ax, uv_centers, sizes,
|
||||
angles, colors, mode='front')
|
||||
|
||||
if 'bird' in args.output_types:
|
||||
z_max = min(args.z_max, 4 + max([el[1] for el in xz_centers]))
|
||||
@ -144,21 +205,6 @@ def show_social(args, image_t, output_path, annotations, dic_out):
|
||||
draw_uncertainty(ax1, xz_centers, stds)
|
||||
|
||||
|
||||
def get_pifpaf_outputs(annotations):
|
||||
# TODO extract direct from predictions with pifpaf 0.11+
|
||||
"""Extract keypoints sets and scores from output dictionary"""
|
||||
if not annotations:
|
||||
return [], []
|
||||
keypoints_sets = np.array([dic['keypoints'] for dic in annotations]).reshape((-1, 17, 3))
|
||||
score_weights = np.ones((keypoints_sets.shape[0], 17))
|
||||
score_weights[:, 3] = 3.0
|
||||
score_weights /= np.sum(score_weights[0, :])
|
||||
kps_scores = keypoints_sets[:, :, 2]
|
||||
ordered_kps_scores = np.sort(kps_scores, axis=1)[:, ::-1]
|
||||
scores = np.sum(score_weights * ordered_kps_scores, axis=1)
|
||||
return keypoints_sets, scores
|
||||
|
||||
|
||||
@contextmanager
|
||||
def bird_canvas(output_path, z_max):
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
@ -174,56 +220,6 @@ def bird_canvas(output_path, z_max):
|
||||
print('Bird-eye-view image saved')
|
||||
|
||||
|
||||
def draw_orientation(ax, centers, sizes, angles, colors, mode):
|
||||
|
||||
if mode == 'front':
|
||||
length = 5
|
||||
fill = False
|
||||
alpha = 0.6
|
||||
zorder_circle = 0.5
|
||||
zorder_arrow = 5
|
||||
linewidth = 1.5
|
||||
edgecolor = 'k'
|
||||
radiuses = [s / 1.2 for s in sizes]
|
||||
else:
|
||||
length = 1.3
|
||||
head_width = 0.3
|
||||
linewidth = 2
|
||||
radiuses = [0.2] * len(centers)
|
||||
# length = 1.6
|
||||
# head_width = 0.4
|
||||
# linewidth = 2.7
|
||||
radiuses = [0.2] * len(centers)
|
||||
fill = True
|
||||
alpha = 1
|
||||
zorder_circle = 2
|
||||
zorder_arrow = 1
|
||||
|
||||
for idx, theta in enumerate(angles):
|
||||
color = colors[idx]
|
||||
radius = radiuses[idx]
|
||||
|
||||
if mode == 'front':
|
||||
x_arr = centers[idx][0] + (length + radius) * math.cos(theta)
|
||||
z_arr = length + centers[idx][1] + (length + radius) * math.sin(theta)
|
||||
delta_x = math.cos(theta)
|
||||
delta_z = math.sin(theta)
|
||||
head_width = max(10, radiuses[idx] / 1.5)
|
||||
|
||||
else:
|
||||
edgecolor = color
|
||||
x_arr = centers[idx][0]
|
||||
z_arr = centers[idx][1]
|
||||
delta_x = length * math.cos(theta)
|
||||
delta_z = - length * math.sin(theta) # keep into account kitti convention
|
||||
|
||||
circle = Circle(centers[idx], radius=radius, color=color, fill=fill, alpha=alpha, zorder=zorder_circle)
|
||||
arrow = FancyArrow(x_arr, z_arr, delta_x, delta_z, head_width=head_width, edgecolor=edgecolor,
|
||||
facecolor=color, linewidth=linewidth, zorder=zorder_arrow)
|
||||
ax.add_patch(circle)
|
||||
ax.add_patch(arrow)
|
||||
|
||||
|
||||
def draw_uncertainty(ax, centers, stds):
|
||||
for idx, std in enumerate(stds):
|
||||
std = stds[idx]
|
||||
|
||||
@ -16,7 +16,7 @@ from ..utils import get_iou_matches, reorder_matches, get_keypoints, pixel_to_ca
|
||||
mask_joint_disparity
|
||||
from .process import preprocess_monstereo, preprocess_monoloco, extract_outputs, extract_outputs_mono,\
|
||||
filter_outputs, cluster_outputs, unnormalize_bi, laplace_sampling
|
||||
from ..activity import social_interactions
|
||||
from ..activity import social_interactions, is_raising_hand
|
||||
from .architectures import MonolocoModel, LocoModel
|
||||
|
||||
|
||||
@ -266,6 +266,12 @@ class Loco:
|
||||
return dic_out
|
||||
|
||||
|
||||
@staticmethod
|
||||
def raising_hand(dic_out, keypoints):
|
||||
dic_out['raising_hand'] = [is_raising_hand(keypoint) for keypoint in keypoints]
|
||||
return dic_out
|
||||
|
||||
|
||||
def median_disparity(dic_out, keypoints, keypoints_r, mask):
|
||||
"""
|
||||
Ablation study: whenever a matching is found, compute depth by median disparity instead of using MonSter
|
||||
|
||||
@ -28,7 +28,7 @@ except ImportError:
|
||||
from .visuals.printer import Printer
|
||||
from .network import Loco
|
||||
from .network.process import factory_for_gt, preprocess_pifpaf
|
||||
from .activity import show_social
|
||||
from .activity import show_activities
|
||||
|
||||
LOG = logging.getLogger(__name__)
|
||||
|
||||
@ -75,7 +75,7 @@ def download_checkpoints(args):
|
||||
assert not args.social_distance, "Social distance not supported in stereo modality"
|
||||
path = MONSTEREO_MODEL
|
||||
name = 'monstereo-201202-1212.pkl'
|
||||
elif args.social_distance:
|
||||
elif ('social_distance' in args.activities) or args.webcam:
|
||||
path = MONOLOCO_MODEL_NU
|
||||
name = 'monoloco_pp-201207-1350.pkl'
|
||||
else:
|
||||
@ -167,14 +167,16 @@ def predict(args):
|
||||
# data
|
||||
data = datasets.ImageList(args.images, preprocess=preprocess)
|
||||
if args.mode == 'stereo':
|
||||
assert len(data.image_paths) % 2 == 0, "Odd number of images in a stereo setting"
|
||||
assert len(
|
||||
data.image_paths) % 2 == 0, "Odd number of images in a stereo setting"
|
||||
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
data, batch_size=args.batch_size, shuffle=False,
|
||||
pin_memory=False, collate_fn=datasets.collate_images_anns_meta)
|
||||
|
||||
for batch_i, (image_tensors_batch, _, meta_batch) in enumerate(data_loader):
|
||||
pred_batch = processor.batch(pifpaf_model, image_tensors_batch, device=args.device)
|
||||
pred_batch = processor.batch(
|
||||
pifpaf_model, image_tensors_batch, device=args.device)
|
||||
|
||||
# unbatch (only for MonStereo)
|
||||
for idx, (pred, meta) in enumerate(zip(pred_batch, meta_batch)):
|
||||
@ -196,7 +198,8 @@ def predict(args):
|
||||
output_path = os.path.join(splits[0], 'out_' + splits[1])
|
||||
else:
|
||||
file_name = os.path.basename(meta['file_name'])
|
||||
output_path = os.path.join(args.output_directory, 'out_' + file_name)
|
||||
output_path = os.path.join(
|
||||
args.output_directory, 'out_' + file_name)
|
||||
|
||||
im_name = os.path.basename(meta['file_name'])
|
||||
print(f'{batch_i} image {im_name} saved as {output_path}')
|
||||
@ -208,23 +211,29 @@ def predict(args):
|
||||
# 3D Predictions
|
||||
if args.mode != 'keypoints':
|
||||
im_size = (cpu_image.size[0], cpu_image.size[1]) # Original
|
||||
kk, dic_gt = factory_for_gt(im_size, focal_length=args.focal, name=im_name, path_gt=args.path_gt)
|
||||
kk, dic_gt = factory_for_gt(
|
||||
im_size, focal_length=args.focal, name=im_name, path_gt=args.path_gt)
|
||||
|
||||
# Preprocess pifpaf outputs and run monoloco
|
||||
boxes, keypoints = preprocess_pifpaf(pifpaf_outs['left'], im_size, enlarge_boxes=False)
|
||||
boxes, keypoints = preprocess_pifpaf(
|
||||
pifpaf_outs['left'], im_size, enlarge_boxes=False)
|
||||
|
||||
if args.mode == 'mono':
|
||||
LOG.info("Prediction with MonoLoco++")
|
||||
dic_out = net.forward(keypoints, kk)
|
||||
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
||||
if args.social_distance:
|
||||
dic_out = net.post_process(
|
||||
dic_out, boxes, keypoints, kk, dic_gt)
|
||||
if 'social_distance' in args.activities:
|
||||
dic_out = net.social_distance(dic_out, args)
|
||||
if 'raise_hand' in args.activities:
|
||||
dic_out = net.raising_hand(dic_out, keypoints)
|
||||
|
||||
else:
|
||||
LOG.info("Prediction with MonStereo")
|
||||
_, keypoints_r = preprocess_pifpaf(pifpaf_outs['right'], im_size)
|
||||
dic_out = net.forward(keypoints, kk, keypoints_r=keypoints_r)
|
||||
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
||||
dic_out = net.post_process(
|
||||
dic_out, boxes, keypoints, kk, dic_gt)
|
||||
|
||||
else:
|
||||
dic_out = defaultdict(list)
|
||||
@ -245,7 +254,7 @@ def factory_outputs(args, pifpaf_outs, dic_out, output_path, kk=None):
|
||||
else:
|
||||
assert 'json' in args.output_types or args.mode == 'keypoints', \
|
||||
"No output saved, please select one among front, bird, multi, json, or pifpaf arguments"
|
||||
if args.social_distance:
|
||||
if 'social_distance' in args.activities:
|
||||
assert args.mode == 'mono', "Social distancing only works with monocular network"
|
||||
|
||||
if args.mode == 'keypoints':
|
||||
@ -256,8 +265,9 @@ def factory_outputs(args, pifpaf_outs, dic_out, output_path, kk=None):
|
||||
|
||||
if any((xx in args.output_types for xx in ['front', 'bird', 'multi'])):
|
||||
LOG.info(output_path)
|
||||
if args.social_distance:
|
||||
show_social(args, pifpaf_outs['image'], output_path, pifpaf_outs['left'], dic_out)
|
||||
if args.activities:
|
||||
show_activities(
|
||||
args, pifpaf_outs['image'], output_path, pifpaf_outs['left'], dic_out)
|
||||
else:
|
||||
printer = Printer(pifpaf_outs['image'], output_path, kk, args)
|
||||
figures, axes = printer.factory_axes(dic_out)
|
||||
|
||||
@ -20,11 +20,13 @@ def cli():
|
||||
predict_parser.add_argument('--glob', help='glob expression for input images (for many images)')
|
||||
predict_parser.add_argument('--checkpoint', help='pifpaf model')
|
||||
predict_parser.add_argument('-o', '--output-directory', help='Output directory')
|
||||
predict_parser.add_argument('--output_types', nargs='+', default=['json'],
|
||||
predict_parser.add_argument('--output_types', nargs='+', default=['multi'],
|
||||
help='what to output: json keypoints skeleton for Pifpaf'
|
||||
'json bird front or multi for MonStereo')
|
||||
predict_parser.add_argument('--no_save', help='to show images', action='store_true')
|
||||
predict_parser.add_argument('--dpi', help='image resolution', type=int, default=150)
|
||||
predict_parser.add_argument('--hide_distance', help='to not show the absolute distance of people from the camera',
|
||||
default=False, action='store_true')
|
||||
predict_parser.add_argument('--dpi', help='image resolution', type=int, default=150)
|
||||
predict_parser.add_argument('--long-edge', default=None, type=int,
|
||||
help='rescale the long side of the image (aspect ratio maintained)')
|
||||
predict_parser.add_argument('--white-overlay',
|
||||
@ -47,19 +49,24 @@ def cli():
|
||||
show.cli(parser)
|
||||
visualizer.cli(parser)
|
||||
|
||||
# Monoloco
|
||||
predict_parser.add_argument('--activities', nargs='+', choices=['raise_hand', 'social_distance'],
|
||||
help='Choose activities to show: social_distance, raise_hand', default=[])
|
||||
predict_parser.add_argument('--mode', help='keypoints, mono, stereo', default='mono')
|
||||
predict_parser.add_argument('--model', help='path of MonoLoco/MonStereo model to load')
|
||||
predict_parser.add_argument('--net', help='only to select older MonoLoco model, otherwise use --mode')
|
||||
predict_parser.add_argument('--path_gt', help='path of json file with gt 3d localization')
|
||||
#default='data/arrays/names-kitti-200615-1022.json')
|
||||
predict_parser.add_argument('--z_max', type=int, help='maximum meters distance for predictions', default=100)
|
||||
predict_parser.add_argument('--n_dropout', type=int, help='Epistemic uncertainty evaluation', default=0)
|
||||
predict_parser.add_argument('--dropout', type=float, help='dropout parameter', default=0.2)
|
||||
predict_parser.add_argument('--show_all', help='only predict ground-truth matches or all', action='store_true')
|
||||
predict_parser.add_argument('--webcam', help='monstereo streaming', action='store_true')
|
||||
predict_parser.add_argument('--camera', help='device to use for webcam streaming', type=int, default=0)
|
||||
predict_parser.add_argument('--focal', help='focal length in mm for a sensor size of 7.2x5.4 mm. (nuScenes)',
|
||||
type=float, default=5.7)
|
||||
|
||||
# Social distancing and social interactions
|
||||
predict_parser.add_argument('--social_distance', help='social', action='store_true')
|
||||
predict_parser.add_argument('--threshold_prob', type=float, help='concordance for samples', default=0.25)
|
||||
predict_parser.add_argument('--threshold_dist', type=float, help='min distance of people', default=2.5)
|
||||
predict_parser.add_argument('--radii', type=tuple, help='o-space radii', default=(0.3, 0.5, 1))
|
||||
@ -127,8 +134,12 @@ def cli():
|
||||
def main():
|
||||
args = cli()
|
||||
if args.command == 'predict':
|
||||
from .predict import predict
|
||||
predict(args)
|
||||
if args.webcam:
|
||||
from .visuals.webcam import webcam
|
||||
webcam(args)
|
||||
else:
|
||||
from .predict import predict
|
||||
predict(args)
|
||||
|
||||
elif args.command == 'prep':
|
||||
if 'nuscenes' in args.dataset:
|
||||
|
||||
@ -6,16 +6,19 @@ and licensed under GNU AGPLv3
|
||||
"""
|
||||
|
||||
from contextlib import contextmanager
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
try:
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Circle, FancyArrow
|
||||
import scipy.ndimage as ndimage
|
||||
except ImportError:
|
||||
ndimage = None
|
||||
plt = None
|
||||
|
||||
|
||||
COCO_PERSON_SKELETON = [
|
||||
@ -71,15 +74,41 @@ def load_image(path, scale=1.0):
|
||||
return image
|
||||
|
||||
|
||||
def highlighted_arm(x, y, connection, color, lwidth, raise_hand, size=None):
|
||||
|
||||
c = color
|
||||
linewidth = lwidth
|
||||
|
||||
width, height = (1,1)
|
||||
if size:
|
||||
width = size[0]
|
||||
height = size[1]
|
||||
|
||||
l_arm_width = np.sqrt(((x[9]-x[7])/width)**2 + ((y[9]-y[7])/height)**2)*100
|
||||
r_arm_width = np.sqrt(((x[10]-x[8])/width)**2 + ((y[10]-y[8])/height)**2)*100
|
||||
|
||||
if ((connection[0] == 5 and connection[1] == 7)
|
||||
or (connection[0] == 7 and connection[1] == 9)) and raise_hand in ['left','both']:
|
||||
c = 'yellow'
|
||||
linewidth = l_arm_width
|
||||
if ((connection[0] == 6 and connection[1] == 8)
|
||||
or (connection[0] == 8 and connection[1] == 10)) and raise_hand in ['right', 'both']:
|
||||
c = 'yellow'
|
||||
linewidth = r_arm_width
|
||||
|
||||
return c, linewidth
|
||||
|
||||
|
||||
class KeypointPainter:
|
||||
def __init__(self, *,
|
||||
skeleton=None,
|
||||
xy_scale=1.0, highlight=None, highlight_invisible=False,
|
||||
xy_scale=1.0, y_scale=1.0, highlight=None, highlight_invisible=False,
|
||||
show_box=True, linewidth=2, markersize=3,
|
||||
color_connections=False,
|
||||
solid_threshold=0.5):
|
||||
self.skeleton = skeleton or COCO_PERSON_SKELETON
|
||||
self.xy_scale = xy_scale
|
||||
self.y_scale = y_scale
|
||||
self.highlight = highlight
|
||||
self.highlight_invisible = highlight_invisible
|
||||
self.show_box = show_box
|
||||
@ -89,22 +118,29 @@ class KeypointPainter:
|
||||
self.solid_threshold = solid_threshold
|
||||
self.dashed_threshold = 0.1 # Patch to still allow force complete pose (set to zero to resume original)
|
||||
|
||||
def _draw_skeleton(self, ax, x, y, v, *, color=None):
|
||||
|
||||
def _draw_skeleton(self, ax, x, y, v, *, i=0, size=None, color=None, activities=None, dic_out=None):
|
||||
if not np.any(v > 0):
|
||||
return
|
||||
|
||||
if self.skeleton is not None:
|
||||
for ci, connection in enumerate(np.array(self.skeleton) - 1):
|
||||
c = color
|
||||
linewidth = self.linewidth
|
||||
|
||||
if 'raise_hand' in activities:
|
||||
c, linewidth = highlighted_arm(x, y, connection, c, linewidth,
|
||||
dic_out['raising_hand'][:][i], size=size)
|
||||
|
||||
if self.color_connections:
|
||||
c = matplotlib.cm.get_cmap('tab20')(ci / len(self.skeleton))
|
||||
if np.all(v[connection] > self.dashed_threshold):
|
||||
ax.plot(x[connection], y[connection],
|
||||
linewidth=self.linewidth, color=c,
|
||||
linewidth=linewidth, color=c,
|
||||
linestyle='dashed', dash_capstyle='round')
|
||||
if np.all(v[connection] > self.solid_threshold):
|
||||
ax.plot(x[connection], y[connection],
|
||||
linewidth=self.linewidth, color=c, solid_capstyle='round')
|
||||
linewidth=linewidth, color=c, solid_capstyle='round')
|
||||
|
||||
# highlight invisible keypoints
|
||||
inv_color = 'k' if self.highlight_invisible else color
|
||||
@ -145,7 +181,7 @@ class KeypointPainter:
|
||||
ax.text(x1, y1, '{:.4f}'.format(score), fontsize=8, color=color)
|
||||
|
||||
@staticmethod
|
||||
def _draw_text(ax, x, y, v, text, color):
|
||||
def _draw_text(ax, x, y, v, text, color, fontsize=8):
|
||||
if not np.any(v > 0):
|
||||
return
|
||||
|
||||
@ -159,7 +195,7 @@ class KeypointPainter:
|
||||
y1 -= 2.0
|
||||
y2 += 2.0
|
||||
|
||||
ax.text(x1 + 2, y1 - 2, text, fontsize=8,
|
||||
ax.text(x1 + 2, y1 - 2, text, fontsize=fontsize,
|
||||
color='white', bbox={'facecolor': color, 'alpha': 0.5, 'linewidth': 0})
|
||||
|
||||
@staticmethod
|
||||
@ -171,7 +207,9 @@ class KeypointPainter:
|
||||
matplotlib.patches.Rectangle(
|
||||
(x - scale, y - scale), 2 * scale, 2 * scale, fill=False, color=color))
|
||||
|
||||
def keypoints(self, ax, keypoint_sets, *, scores=None, color=None, colors=None, texts=None):
|
||||
def keypoints(self, ax, keypoint_sets, *,
|
||||
size=None, scores=None, color=None,
|
||||
colors=None, texts=None, activities=None, dic_out=None):
|
||||
if keypoint_sets is None:
|
||||
return
|
||||
|
||||
@ -183,7 +221,7 @@ class KeypointPainter:
|
||||
for i, kps in enumerate(np.asarray(keypoint_sets)):
|
||||
assert kps.shape[1] == 3
|
||||
x = kps[:, 0] * self.xy_scale
|
||||
y = kps[:, 1] * self.xy_scale
|
||||
y = kps[:, 1] * self.xy_scale * self.y_scale
|
||||
v = kps[:, 2]
|
||||
|
||||
if colors is not None:
|
||||
@ -192,7 +230,13 @@ class KeypointPainter:
|
||||
if isinstance(color, (int, np.integer)):
|
||||
color = matplotlib.cm.get_cmap('tab20')((color % 20 + 0.05) / 20)
|
||||
|
||||
self._draw_skeleton(ax, x, y, v, color=color)
|
||||
self._draw_skeleton(ax, x, y, v, i=i, size=size, color=color, activities=activities, dic_out=dic_out)
|
||||
|
||||
score = scores[i] if scores is not None else None
|
||||
if score is not None:
|
||||
z_str = str(score).split(sep='.')
|
||||
text = z_str[0] + '.' + z_str[1][0]
|
||||
self._draw_text(ax, x[1:3], y[1:3]-5, v[1:3], text, color, fontsize=16)
|
||||
if self.show_box:
|
||||
score = scores[i] if scores is not None else None
|
||||
self._draw_box(ax, x, y, v, color, score)
|
||||
@ -336,3 +380,78 @@ def white_screen(ax, alpha=0.9):
|
||||
plt.Rectangle((0, 0), 1, 1, transform=ax.transAxes, alpha=alpha,
|
||||
facecolor='white')
|
||||
)
|
||||
|
||||
|
||||
def get_pifpaf_outputs(annotations):
|
||||
# TODO extract direct from predictions with pifpaf 0.11+
|
||||
"""Extract keypoints sets and scores from output dictionary"""
|
||||
if not annotations:
|
||||
return [], []
|
||||
keypoints_sets = np.array([dic['keypoints']
|
||||
for dic in annotations]).reshape((-1, 17, 3))
|
||||
score_weights = np.ones((keypoints_sets.shape[0], 17))
|
||||
score_weights[:, 3] = 3.0
|
||||
score_weights /= np.sum(score_weights[0, :])
|
||||
kps_scores = keypoints_sets[:, :, 2]
|
||||
ordered_kps_scores = np.sort(kps_scores, axis=1)[:, ::-1]
|
||||
scores = np.sum(score_weights * ordered_kps_scores, axis=1)
|
||||
return keypoints_sets, scores
|
||||
|
||||
|
||||
def draw_orientation(ax, centers, sizes, angles, colors, mode):
|
||||
|
||||
if mode == 'front':
|
||||
length = 5
|
||||
fill = False
|
||||
alpha = 0.6
|
||||
zorder_circle = 0.5
|
||||
zorder_arrow = 5
|
||||
linewidth = 1.5
|
||||
edgecolor = 'k'
|
||||
radiuses = [s / 1.2 for s in sizes]
|
||||
else:
|
||||
length = 1.3
|
||||
head_width = 0.3
|
||||
linewidth = 2
|
||||
radiuses = [0.2] * len(centers)
|
||||
# length = 1.6
|
||||
# head_width = 0.4
|
||||
# linewidth = 2.7
|
||||
radiuses = [0.2] * len(centers)
|
||||
fill = True
|
||||
alpha = 1
|
||||
zorder_circle = 2
|
||||
zorder_arrow = 1
|
||||
|
||||
for idx, theta in enumerate(angles):
|
||||
color = colors[idx]
|
||||
radius = radiuses[idx]
|
||||
|
||||
if mode == 'front':
|
||||
x_arr = centers[idx][0] + (length + radius) * math.cos(theta)
|
||||
z_arr = length + centers[idx][1] + \
|
||||
(length + radius) * math.sin(theta)
|
||||
delta_x = math.cos(theta)
|
||||
delta_z = math.sin(theta)
|
||||
head_width = max(10, radiuses[idx] / 1.5)
|
||||
|
||||
else:
|
||||
edgecolor = color
|
||||
x_arr = centers[idx][0]
|
||||
z_arr = centers[idx][1]
|
||||
delta_x = length * math.cos(theta)
|
||||
# keep into account kitti convention
|
||||
delta_z = - length * math.sin(theta)
|
||||
|
||||
circle = Circle(centers[idx], radius=radius, color=color,
|
||||
fill=fill, alpha=alpha, zorder=zorder_circle)
|
||||
arrow = FancyArrow(x_arr, z_arr, delta_x, delta_z, head_width=head_width, edgecolor=edgecolor,
|
||||
facecolor=color, linewidth=linewidth, zorder=zorder_arrow)
|
||||
ax.add_patch(circle)
|
||||
ax.add_patch(arrow)
|
||||
|
||||
|
||||
def social_distance_colors(colors, dic_out):
|
||||
# Prepare color for social distancing
|
||||
colors = ['r' if flag else colors[idx] for idx,flag in enumerate(dic_out['social_distance'])]
|
||||
return colors
|
||||
|
||||
@ -8,6 +8,7 @@ from collections import OrderedDict
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
from .pifpaf_show import KeypointPainter, get_pifpaf_outputs, draw_orientation, social_distance_colors
|
||||
from ..utils import pixel_to_camera
|
||||
|
||||
|
||||
@ -51,7 +52,6 @@ class Printer:
|
||||
boxes_gt, uv_camera, radius, auxs = nones(16)
|
||||
|
||||
def __init__(self, image, output_path, kk, args):
|
||||
|
||||
self.im = image
|
||||
self.width = self.im.size[0]
|
||||
self.height = self.im.size[1]
|
||||
@ -59,21 +59,27 @@ class Printer:
|
||||
self.kk = kk
|
||||
self.output_types = args.output_types
|
||||
self.z_max = args.z_max # set max distance to show instances
|
||||
self.show = args.show
|
||||
self.show_all = args.show_all
|
||||
self.save = not args.no_save
|
||||
self.webcam = args.webcam
|
||||
self.show_all = args.show_all or self.webcam
|
||||
self.show = args.show_all or self.webcam
|
||||
self.save = not args.no_save and not self.webcam
|
||||
self.plt_close = not self.webcam
|
||||
self.activities = args.activities
|
||||
self.hide_distance = args.hide_distance
|
||||
|
||||
# define image attributes
|
||||
self.attr = image_attributes(args.dpi, args.output_types)
|
||||
|
||||
def _process_results(self, dic_ann):
|
||||
# Include the vectors inside the interval given by z_max
|
||||
self.angles = dic_ann['angles']
|
||||
self.stds_ale = dic_ann['stds_ale']
|
||||
self.stds_epi = dic_ann['stds_epi']
|
||||
self.gt = dic_ann['gt'] # regulate ground-truth matching
|
||||
self.xx_gt = [xx[0] for xx in dic_ann['xyz_real']]
|
||||
self.xx_pred = [xx[0] for xx in dic_ann['xyz_pred']]
|
||||
|
||||
self.xz_centers = [[xx[0], xx[2]] for xx in dic_ann['xyz_pred']]
|
||||
# Set maximum distance
|
||||
self.dd_pred = dic_ann['dds_pred']
|
||||
self.dd_real = dic_ann['dds_real']
|
||||
@ -86,6 +92,10 @@ class Printer:
|
||||
for idx, xx in enumerate(dic_ann['xyz_pred'])]
|
||||
|
||||
self.uv_heads = dic_ann['uv_heads']
|
||||
self.centers = self.uv_heads
|
||||
if 'multi' in self.output_types:
|
||||
for center in self.centers:
|
||||
center[1] = center[1] * self.y_scale
|
||||
self.uv_shoulders = dic_ann['uv_shoulders']
|
||||
self.boxes = dic_ann['boxes']
|
||||
self.boxes_gt = dic_ann['boxes_gt']
|
||||
@ -103,11 +113,15 @@ class Printer:
|
||||
|
||||
def factory_axes(self, dic_out):
|
||||
"""Create axes for figures: front bird multi"""
|
||||
|
||||
plt.style.use('dark_background')
|
||||
|
||||
axes = []
|
||||
figures = []
|
||||
|
||||
# Process the annotation dictionary of monoloco
|
||||
self._process_results(dic_out)
|
||||
if dic_out:
|
||||
self._process_results(dic_out)
|
||||
|
||||
# Initialize multi figure, resizing it for aesthetic proportion
|
||||
if 'multi' in self.output_types:
|
||||
@ -129,6 +143,7 @@ class Printer:
|
||||
|
||||
fig, (ax0, ax1) = plt.subplots(1, 2, sharey=False, gridspec_kw={'width_ratios': [width_ratio, 1]},
|
||||
figsize=(fig_width, fig_height))
|
||||
|
||||
ax1.set_aspect(fig_ar_1)
|
||||
fig.set_tight_layout(True)
|
||||
fig.subplots_adjust(left=0.02, right=0.98, bottom=0, top=1, hspace=0, wspace=0.02)
|
||||
@ -165,7 +180,58 @@ class Printer:
|
||||
axes.append(ax1)
|
||||
return figures, axes
|
||||
|
||||
def draw(self, figures, axes, image):
|
||||
|
||||
def _webcam_front(self, axis, colors, activities, annotations, dic_out):
|
||||
sizes = [abs(self.centers[idx][1] - uv_s[1]*self.y_scale) / 1.5 for idx, uv_s in
|
||||
enumerate(self.uv_shoulders)]
|
||||
|
||||
keypoint_sets, _ = get_pifpaf_outputs(annotations)
|
||||
keypoint_painter = KeypointPainter(show_box=False, y_scale=self.y_scale)
|
||||
|
||||
if not self.hide_distance:
|
||||
scores = self.dd_pred
|
||||
else:
|
||||
scores=None
|
||||
|
||||
keypoint_painter.keypoints(
|
||||
axis, keypoint_sets, size=self.im.size,
|
||||
scores=scores, colors=colors, activities=activities, dic_out=dic_out)
|
||||
|
||||
draw_orientation(axis, self.centers,
|
||||
sizes, self.angles, colors, mode='front')
|
||||
|
||||
|
||||
def _front_loop(self, iterator, axes, number, colors, annotations, dic_out):
|
||||
for idx in iterator:
|
||||
if any(xx in self.output_types for xx in ['front', 'multi']) and self.zz_pred[idx] > 0:
|
||||
if self.webcam:
|
||||
self._webcam_front(axes[0], colors, self.activities, annotations, dic_out)
|
||||
else:
|
||||
self._draw_front(axes[0],
|
||||
self.dd_pred[idx],
|
||||
idx,
|
||||
number)
|
||||
number['num'] += 1
|
||||
|
||||
|
||||
def _bird_loop(self, iterator, axes, colors, number):
|
||||
for idx in iterator:
|
||||
if any(xx in self.output_types for xx in ['bird', 'multi']) and self.zz_pred[idx] > 0:
|
||||
draw_orientation(axes[1], self.xz_centers, [], self.angles, colors, mode='bird')
|
||||
# Draw ground truth and uncertainty
|
||||
self._draw_uncertainty(axes, idx)
|
||||
|
||||
# Draw bird eye view text
|
||||
if number['flag']:
|
||||
self._draw_text_bird(axes, idx, number['num'])
|
||||
number['num'] += 1
|
||||
|
||||
|
||||
def draw(self, figures, axes, image, dic_out=None, annotations=None):
|
||||
|
||||
colors = ['deepskyblue' for _ in self.uv_heads]
|
||||
if 'social_distance' in self.activities:
|
||||
colors = social_distance_colors(colors, dic_out)
|
||||
|
||||
# whether to include instances that don't match the ground-truth
|
||||
iterator = range(len(self.zz_pred)) if self.show_all else range(len(self.zz_gt))
|
||||
@ -176,27 +242,16 @@ class Printer:
|
||||
number = dict(flag=False, num=97)
|
||||
if any(xx in self.output_types for xx in ['front', 'multi']):
|
||||
number['flag'] = True # add numbers
|
||||
self.mpl_im0.set_data(image)
|
||||
for idx in iterator:
|
||||
if any(xx in self.output_types for xx in ['front', 'multi']) and self.zz_pred[idx] > 0:
|
||||
self._draw_front(axes[0],
|
||||
self.dd_pred[idx],
|
||||
idx,
|
||||
number)
|
||||
number['num'] += 1
|
||||
# Remove image if social distance is activated
|
||||
if 'social_distance' not in self.activities:
|
||||
self.mpl_im0.set_data(image)
|
||||
|
||||
self._front_loop(iterator, axes, number, colors, annotations, dic_out)
|
||||
|
||||
# Draw the bird figure
|
||||
number['num'] = 97
|
||||
for idx in iterator:
|
||||
if any(xx in self.output_types for xx in ['bird', 'multi']) and self.zz_pred[idx] > 0:
|
||||
self._bird_loop(iterator, axes, colors, number)
|
||||
|
||||
# Draw ground truth and uncertainty
|
||||
self._draw_uncertainty(axes, idx)
|
||||
|
||||
# Draw bird eye view text
|
||||
if number['flag']:
|
||||
self._draw_text_bird(axes, idx, number['num'])
|
||||
number['num'] += 1
|
||||
self._draw_legend(axes)
|
||||
|
||||
# Draw, save or/and show the figures
|
||||
@ -206,7 +261,9 @@ class Printer:
|
||||
fig.savefig(self.output_path + self.extensions[idx], bbox_inches='tight', dpi=self.attr['dpi'])
|
||||
if self.show:
|
||||
fig.show()
|
||||
plt.close(fig)
|
||||
if self.plt_close:
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
def _draw_front(self, ax, z, idx, number):
|
||||
|
||||
@ -230,23 +287,24 @@ class Printer:
|
||||
x_t = x0 - 1.5
|
||||
y_t = y1 + self.attr['y_box_margin']
|
||||
if y_t < (self.height-10):
|
||||
ax.annotate(
|
||||
text,
|
||||
(x_t, y_t),
|
||||
fontsize=self.attr['fontsize_d'],
|
||||
weight='bold',
|
||||
xytext=(5.0, 5.0),
|
||||
textcoords='offset points',
|
||||
color='white',
|
||||
bbox=bbox_config,
|
||||
)
|
||||
if number['flag']:
|
||||
ax.text(x0 - 17,
|
||||
y1 + 14,
|
||||
chr(number['num']),
|
||||
fontsize=self.attr['fontsize_num'],
|
||||
color=self.attr[self.modes[idx]]['numcolor'],
|
||||
weight='bold')
|
||||
if not self.hide_distance:
|
||||
ax.annotate(
|
||||
text,
|
||||
(x_t, y_t),
|
||||
fontsize=self.attr['fontsize_d'],
|
||||
weight='bold',
|
||||
xytext=(5.0, 5.0),
|
||||
textcoords='offset points',
|
||||
color='white',
|
||||
bbox=bbox_config,
|
||||
)
|
||||
if number['flag']:
|
||||
ax.text(x0 - 17,
|
||||
y1 + 14,
|
||||
chr(number['num']),
|
||||
fontsize=self.attr['fontsize_num'],
|
||||
color=self.attr[self.modes[idx]]['numcolor'],
|
||||
weight='bold')
|
||||
|
||||
def _draw_text_bird(self, axes, idx, num):
|
||||
"""Plot the number in the bird eye view map"""
|
||||
@ -360,20 +418,23 @@ class Printer:
|
||||
ax.set_axis_off()
|
||||
ax.set_xlim(0, self.width)
|
||||
ax.set_ylim(self.height, 0)
|
||||
self.mpl_im0 = ax.imshow(self.im)
|
||||
if not self.activities or 'social_distance' not in self.activities:
|
||||
self.mpl_im0 = ax.imshow(self.im)
|
||||
ax.get_xaxis().set_visible(False)
|
||||
ax.get_yaxis().set_visible(False)
|
||||
|
||||
else:
|
||||
uv_max = [0., float(self.height)]
|
||||
xyz_max = pixel_to_camera(uv_max, self.kk, self.z_max)
|
||||
x_max = abs(xyz_max[0]) # shortcut to avoid oval circles in case of different kk
|
||||
x_max = abs(xyz_max[0]) # shortcut to avoid oval circles in case of different kk
|
||||
corr = round(float(x_max / 3))
|
||||
ax.plot([0, x_max], [0, self.z_max], 'k--')
|
||||
ax.plot([0, -x_max], [0, self.z_max], 'k--')
|
||||
ax.plot([0, x_max], [0, self.z_max], 'w--')
|
||||
ax.plot([0, -x_max], [0, self.z_max], 'w--')
|
||||
ax.set_xlim(-x_max + corr, x_max - corr)
|
||||
ax.set_ylim(0, self.z_max + 1)
|
||||
ax.set_xlabel("X [m]")
|
||||
ax.set_box_aspect(.8)
|
||||
plt.xlim((-x_max, x_max))
|
||||
plt.xticks(fontsize=self.attr['fontsize_ax'])
|
||||
plt.yticks(fontsize=self.attr['fontsize_ax'])
|
||||
return ax
|
||||
|
||||
198
monoloco/visuals/webcam.py
Normal file
198
monoloco/visuals/webcam.py
Normal file
@ -0,0 +1,198 @@
|
||||
# pylint: disable=W0212
|
||||
"""
|
||||
Webcam demo application
|
||||
|
||||
Implementation adapted from https://github.com/vita-epfl/openpifpaf/blob/master/openpifpaf/webcam.py
|
||||
|
||||
"""
|
||||
|
||||
import time
|
||||
import logging
|
||||
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
from PIL import Image
|
||||
try:
|
||||
import cv2
|
||||
except ImportError:
|
||||
cv2 = None
|
||||
|
||||
from openpifpaf import decoder, network, visualizer, show, logger
|
||||
import openpifpaf.datasets as datasets
|
||||
from openpifpaf.predict import processor_factory, preprocess_factory
|
||||
|
||||
from ..visuals import Printer
|
||||
from ..network import Loco
|
||||
from ..network.process import preprocess_pifpaf, factory_for_gt
|
||||
from ..predict import download_checkpoints
|
||||
|
||||
LOG = logging.getLogger(__name__)
|
||||
|
||||
def factory_from_args(args):
|
||||
|
||||
# Model
|
||||
dic_models = download_checkpoints(args)
|
||||
args.checkpoint = dic_models['keypoints']
|
||||
|
||||
logger.configure(args, LOG) # logger first
|
||||
|
||||
assert len(args.output_types) == 1 and 'json' not in args.output_types
|
||||
|
||||
# Devices
|
||||
args.device = torch.device('cpu')
|
||||
args.pin_memory = False
|
||||
if torch.cuda.is_available():
|
||||
args.device = torch.device('cuda')
|
||||
args.pin_memory = True
|
||||
LOG.debug('neural network device: %s', args.device)
|
||||
|
||||
# Add visualization defaults
|
||||
args.figure_width = 10
|
||||
args.dpi_factor = 1.0
|
||||
|
||||
args.z_max = 10
|
||||
args.show_all = True
|
||||
args.no_save = True
|
||||
args.batch_size = 1
|
||||
|
||||
if args.long_edge is None:
|
||||
args.long_edge = 144
|
||||
# Make default pifpaf argument
|
||||
args.force_complete_pose = True
|
||||
LOG.info("Force complete pose is active")
|
||||
|
||||
# Configure
|
||||
decoder.configure(args)
|
||||
network.Factory.configure(args)
|
||||
show.configure(args)
|
||||
visualizer.configure(args)
|
||||
|
||||
return args, dic_models
|
||||
|
||||
|
||||
def webcam(args):
|
||||
|
||||
assert args.mode in 'mono'
|
||||
|
||||
args, dic_models = factory_from_args(args)
|
||||
|
||||
# Load Models
|
||||
net = Loco(model=dic_models[args.mode], mode=args.mode, device=args.device,
|
||||
n_dropout=args.n_dropout, p_dropout=args.dropout)
|
||||
|
||||
processor, pifpaf_model = processor_factory(args)
|
||||
preprocess = preprocess_factory(args)
|
||||
|
||||
# Start recording
|
||||
cam = cv2.VideoCapture(args.camera)
|
||||
visualizer_mono = None
|
||||
|
||||
while True:
|
||||
start = time.time()
|
||||
ret, frame = cam.read()
|
||||
scale = (args.long_edge)/frame.shape[0]
|
||||
image = cv2.resize(frame, None, fx=scale, fy=scale)
|
||||
height, width, _ = image.shape
|
||||
print('resized image size: {}'.format(image.shape))
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
pil_image = Image.fromarray(image)
|
||||
|
||||
data = datasets.PilImageList(
|
||||
[pil_image], preprocess=preprocess)
|
||||
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
data, batch_size=1, shuffle=False,
|
||||
pin_memory=False, collate_fn=datasets.collate_images_anns_meta)
|
||||
|
||||
for (image_tensors_batch, _, meta_batch) in data_loader:
|
||||
pred_batch = processor.batch(
|
||||
pifpaf_model, image_tensors_batch, device=args.device)
|
||||
|
||||
for idx, (pred, meta) in enumerate(zip(pred_batch, meta_batch)):
|
||||
pred = [ann.inverse_transform(meta) for ann in pred]
|
||||
|
||||
if idx == 0:
|
||||
pifpaf_outs = {
|
||||
'pred': pred,
|
||||
'left': [ann.json_data() for ann in pred],
|
||||
'image': image}
|
||||
|
||||
if not ret:
|
||||
break
|
||||
key = cv2.waitKey(1)
|
||||
if key % 256 == 27:
|
||||
# ESC pressed
|
||||
print("Escape hit, closing...")
|
||||
break
|
||||
|
||||
kk, dic_gt = factory_for_gt(pil_image.size, focal_length=args.focal)
|
||||
boxes, keypoints = preprocess_pifpaf(
|
||||
pifpaf_outs['left'], (width, height))
|
||||
|
||||
dic_out = net.forward(keypoints, kk)
|
||||
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
||||
|
||||
if 'social_distance' in args.activities:
|
||||
dic_out = net.social_distance(dic_out, args)
|
||||
if 'raise_hand' in args.activities:
|
||||
dic_out = net.raising_hand(dic_out, keypoints)
|
||||
if visualizer_mono is None: # it is, at the beginning
|
||||
visualizer_mono = Visualizer(kk, args)(pil_image) # create it with the first image
|
||||
visualizer_mono.send(None)
|
||||
|
||||
print(dic_out)
|
||||
visualizer_mono.send((pil_image, dic_out, pifpaf_outs))
|
||||
|
||||
end = time.time()
|
||||
print("run-time: {:.2f} ms".format((end-start)*1000))
|
||||
|
||||
cam.release()
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
class Visualizer:
|
||||
def __init__(self, kk, args):
|
||||
self.kk = kk
|
||||
self.args = args
|
||||
|
||||
def __call__(self, first_image, fig_width=1.0, **kwargs):
|
||||
if 'figsize' not in kwargs:
|
||||
kwargs['figsize'] = (fig_width, fig_width *
|
||||
first_image.size[0] / first_image.size[1])
|
||||
|
||||
printer = Printer(first_image, output_path="",
|
||||
kk=self.kk, args=self.args)
|
||||
|
||||
figures, axes = printer.factory_axes(None)
|
||||
|
||||
for fig in figures:
|
||||
fig.show()
|
||||
|
||||
while True:
|
||||
image, dic_out, pifpaf_outs = yield
|
||||
|
||||
# Clears previous annotations between frames
|
||||
axes[0].patches = []
|
||||
axes[0].lines = []
|
||||
axes[0].texts = []
|
||||
if len(axes) > 1:
|
||||
axes[1].patches = []
|
||||
axes[1].lines = [axes[1].lines[0], axes[1].lines[1]]
|
||||
axes[1].texts = []
|
||||
|
||||
if dic_out and dic_out['dds_pred']:
|
||||
printer._process_results(dic_out)
|
||||
printer.draw(figures, axes, image, dic_out, pifpaf_outs['left'])
|
||||
mypause(0.01)
|
||||
|
||||
|
||||
def mypause(interval):
|
||||
manager = plt._pylab_helpers.Gcf.get_active()
|
||||
if manager is not None:
|
||||
canvas = manager.canvas
|
||||
if canvas.figure.stale:
|
||||
canvas.draw_idle()
|
||||
canvas.start_event_loop(interval)
|
||||
else:
|
||||
time.sleep(interval)
|
||||
@ -33,7 +33,7 @@ PREDICT_COMMAND_SOCIAL_DISTANCE = [
|
||||
'python3', '-m', 'monoloco.run',
|
||||
'predict',
|
||||
'docs/frame0032.jpg',
|
||||
'--social_distance',
|
||||
'--activities', 'social_distance',
|
||||
'--output_types', 'front', 'bird',
|
||||
'--decoder-workers=0' # for windows'
|
||||
]
|
||||
|
||||
Loading…
Reference in New Issue
Block a user