set xlim and convert images to jpeg

This commit is contained in:
Lorenzo 2020-12-09 14:37:38 +01:00
parent 7beb093a6b
commit 7ae04660ff
8 changed files with 10 additions and 10 deletions

View File

@ -5,14 +5,14 @@ This repository contains the code for two research projects:
1. **MonStereo: When Monocular and Stereo Meet at the Tail of 3D Human Localization**
[README](https://github.com/vita-epfl/monstereo/tree/master/docs/MonStereo.md) & [Article](https://arxiv.org/abs/2008.10913)
![monstereo 1](docs/000840_multi.png)
![monstereo 1](docs/000840_multi.jpg)
2. **Perceiving Humans: from Monocular 3D Localization to Social Distancing (MonoLoco++)**
[README](https://github.com/vita-epfl/monstereo/tree/master/docs/MonoLoco_pp.md) & [Article](https://arxiv.org/abs/2009.00984)
![social distancing](docs/pull_sd.png)
![social distancing](docs/social_distancing.jpg)
![monoloco_pp](docs/truck.png)
![monoloco_pp](docs/truck.jpg)
Both projects has been built upon the CVPR'19 project [Openpifpaf](https://github.com/vita-epfl/openpifpaf)
for 2D pose estimation and the ICCV'19 project [MonoLoco](https://github.com/vita-epfl/monoloco) for monocular 3D localization.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.4 MiB

View File

@ -66,13 +66,13 @@ After downloading model and ground-truth file, a demo can be tested with the fol
--model data/models/ms-200710-1511.pkl --z_max 30 --checkpoint resnet152 --path_gt data/arrays/names-kitti-200615-1022.json
-o data/output`
![Crowded scene](out_000840.png)
![Crowded scene](out_000840.jpg)
`python3 -m monstereo.run predict --glob docs/005523*.png --output_types multi --scale 2
--model data/models/ms-200710-1511.pkl --z_max 30 --checkpoint resnet152 --path_gt data/arrays/names-kitti-200615-1022.json
-o data/output`
![Occluded hard example](out_005523.png)
![Occluded hard example](out_005523.jpg)
# Preprocessing
Preprocessing and training step are already fully supported by the code provided,

Binary file not shown.

Before

Width:  |  Height:  |  Size: 584 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 761 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 460 KiB

View File

@ -28,7 +28,7 @@ def show_results(dic_stats, clusters, net, dir_fig, show=False, save=False):
x_max = 31
y_min = 0
# y_max = 2.2
y_max = 3.5 if net == 'monstereo' else 2.6
y_max = 3.5 if net == 'monstereo' else 2.7
xx = np.linspace(x_min, x_max, 100)
excl_clusters = ['all', 'easy', 'moderate', 'hard', '49']
clusters = [clst for clst in clusters if clst not in excl_clusters]
@ -76,10 +76,10 @@ def show_spread(dic_stats, clusters, net, dir_fig, show=False, save=False):
assert net in ('monoloco_pp', 'monstereo'), "network not recognized"
phase = 'test'
excl_clusters = ['all', 'easy', 'moderate', 'hard']
excl_clusters = ['all', 'easy', 'moderate', 'hard', '49']
clusters = [clst for clst in clusters if clst not in excl_clusters]
x_min = 3
x_max = 42
x_max = 31
y_min = 0
plt.figure(2, figsize=FIGSIZE)
@ -87,10 +87,10 @@ def show_spread(dic_stats, clusters, net, dir_fig, show=False, save=False):
bbs = np.array([dic_stats[phase][net][key]['std_ale'] for key in clusters[:-1]])
xx = np.linspace(x_min, x_max, 100)
if net == 'monoloco_pp':
y_max = 5
y_max = 2.7
color = 'deepskyblue'
epis = np.array([dic_stats[phase][net][key]['std_epi'] for key in clusters[:-1]])
plt.plot(xxs, epis, marker='o', color='coral', label="Combined uncertainty (\u03C3)")
plt.plot(xxs, epis, marker='o', color='coral', linewidth=4, markersize=8, label="Combined uncertainty (\u03C3)")
else:
y_max = 3.5
color = 'b'