set xlim and convert images to jpeg
This commit is contained in:
parent
7beb093a6b
commit
7ae04660ff
@ -5,14 +5,14 @@ This repository contains the code for two research projects:
|
||||
1. **MonStereo: When Monocular and Stereo Meet at the Tail of 3D Human Localization**
|
||||
[README](https://github.com/vita-epfl/monstereo/tree/master/docs/MonStereo.md) & [Article](https://arxiv.org/abs/2008.10913)
|
||||
|
||||

|
||||

|
||||
|
||||
2. **Perceiving Humans: from Monocular 3D Localization to Social Distancing (MonoLoco++)**
|
||||
[README](https://github.com/vita-epfl/monstereo/tree/master/docs/MonoLoco_pp.md) & [Article](https://arxiv.org/abs/2009.00984)
|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||
Both projects has been built upon the CVPR'19 project [Openpifpaf](https://github.com/vita-epfl/openpifpaf)
|
||||
for 2D pose estimation and the ICCV'19 project [MonoLoco](https://github.com/vita-epfl/monoloco) for monocular 3D localization.
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 3.4 MiB |
@ -66,13 +66,13 @@ After downloading model and ground-truth file, a demo can be tested with the fol
|
||||
--model data/models/ms-200710-1511.pkl --z_max 30 --checkpoint resnet152 --path_gt data/arrays/names-kitti-200615-1022.json
|
||||
-o data/output`
|
||||
|
||||

|
||||

|
||||
|
||||
`python3 -m monstereo.run predict --glob docs/005523*.png --output_types multi --scale 2
|
||||
--model data/models/ms-200710-1511.pkl --z_max 30 --checkpoint resnet152 --path_gt data/arrays/names-kitti-200615-1022.json
|
||||
-o data/output`
|
||||
|
||||

|
||||

|
||||
|
||||
# Preprocessing
|
||||
Preprocessing and training step are already fully supported by the code provided,
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 584 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 761 KiB |
BIN
docs/pull_sd.png
BIN
docs/pull_sd.png
Binary file not shown.
|
Before Width: | Height: | Size: 2.2 MiB |
BIN
docs/truck.png
BIN
docs/truck.png
Binary file not shown.
|
Before Width: | Height: | Size: 460 KiB |
@ -28,7 +28,7 @@ def show_results(dic_stats, clusters, net, dir_fig, show=False, save=False):
|
||||
x_max = 31
|
||||
y_min = 0
|
||||
# y_max = 2.2
|
||||
y_max = 3.5 if net == 'monstereo' else 2.6
|
||||
y_max = 3.5 if net == 'monstereo' else 2.7
|
||||
xx = np.linspace(x_min, x_max, 100)
|
||||
excl_clusters = ['all', 'easy', 'moderate', 'hard', '49']
|
||||
clusters = [clst for clst in clusters if clst not in excl_clusters]
|
||||
@ -76,10 +76,10 @@ def show_spread(dic_stats, clusters, net, dir_fig, show=False, save=False):
|
||||
|
||||
assert net in ('monoloco_pp', 'monstereo'), "network not recognized"
|
||||
phase = 'test'
|
||||
excl_clusters = ['all', 'easy', 'moderate', 'hard']
|
||||
excl_clusters = ['all', 'easy', 'moderate', 'hard', '49']
|
||||
clusters = [clst for clst in clusters if clst not in excl_clusters]
|
||||
x_min = 3
|
||||
x_max = 42
|
||||
x_max = 31
|
||||
y_min = 0
|
||||
|
||||
plt.figure(2, figsize=FIGSIZE)
|
||||
@ -87,10 +87,10 @@ def show_spread(dic_stats, clusters, net, dir_fig, show=False, save=False):
|
||||
bbs = np.array([dic_stats[phase][net][key]['std_ale'] for key in clusters[:-1]])
|
||||
xx = np.linspace(x_min, x_max, 100)
|
||||
if net == 'monoloco_pp':
|
||||
y_max = 5
|
||||
y_max = 2.7
|
||||
color = 'deepskyblue'
|
||||
epis = np.array([dic_stats[phase][net][key]['std_epi'] for key in clusters[:-1]])
|
||||
plt.plot(xxs, epis, marker='o', color='coral', label="Combined uncertainty (\u03C3)")
|
||||
plt.plot(xxs, epis, marker='o', color='coral', linewidth=4, markersize=8, label="Combined uncertainty (\u03C3)")
|
||||
else:
|
||||
y_max = 3.5
|
||||
color = 'b'
|
||||
|
||||
Loading…
Reference in New Issue
Block a user