activity experiment
This commit is contained in:
parent
bf727c03c8
commit
98d1c29012
@ -46,7 +46,9 @@ def social_interactions(idx, centers, angles, dds, stds=None, social_distance=Fa
|
||||
# Samples distance
|
||||
dds = torch.tensor(dds).view(-1, 1)
|
||||
stds = torch.tensor(stds).view(-1, 1)
|
||||
# stds = get_task_error(dds) # similar results to MonoLoco but lower true positive
|
||||
# stds_te = get_task_error(dds) # similar results to MonoLoco but lower true positive
|
||||
# print(f'ML : {float(torch.mean(stds))}\n')
|
||||
# print(f'Task Error: {float(torch.mean(stds_te))}')
|
||||
laplace_d = torch.cat((dds, stds), dim=1)
|
||||
samples_d = laplace_sampling(laplace_d, n_samples=n_samples)
|
||||
|
||||
|
||||
@ -24,6 +24,8 @@ class ActivityEvaluator:
|
||||
def __init__(self, args):
|
||||
|
||||
self.dir_ann = args.dir_ann
|
||||
assert self.dir_ann is not None and os.path.exists(self.dir_ann), \
|
||||
"Annotation directory not provided / does not exist"
|
||||
assert os.listdir(self.dir_ann), "Annotation directory is empty"
|
||||
|
||||
# COLLECTIVE ACTIVITY DATASET (talking)
|
||||
@ -32,7 +34,7 @@ class ActivityEvaluator:
|
||||
self.sequences = ['seq02', 'seq14', 'seq12', 'seq13', 'seq11', 'seq36']
|
||||
# folders_collective = ['seq02']
|
||||
self.dir_data = 'data/activity/dataset'
|
||||
self.THRESHOLD_PROB = 0.2 # Concordance for samples
|
||||
self.THRESHOLD_PROB = 0.25 # Concordance for samples
|
||||
self.THRESHOLD_DIST = 2 # Threshold to check distance of people
|
||||
self.RADII = (0.3, 0.5) # expected radii of the o-space
|
||||
self.PIFPAF_CONF = 0.3
|
||||
@ -95,6 +97,8 @@ class ActivityEvaluator:
|
||||
self.estimate_activity(dic_out, matches, ys_gt, categories=categories)
|
||||
|
||||
# Print Results
|
||||
acc = accuracy_score(self.all_gt[seq], self.all_pred[seq])
|
||||
print(f"Accuracy of category {seq}: {100*acc:.2f}%")
|
||||
cout_results(self.cnt, self.all_gt, self.all_pred, categories=self.sequences)
|
||||
|
||||
def eval_kitti(self):
|
||||
@ -225,8 +229,9 @@ def cout_results(cnt, all_gt, all_pred, categories=()):
|
||||
|
||||
# Final Accuracy
|
||||
acc = accuracy_score(all_gt['all'], all_pred['all'])
|
||||
recall = cnt['pred']['all'] / cnt['gt']['all'] * 100 # only predictions that match a ground-truth are included
|
||||
print('-' * 80)
|
||||
print("Final Accuracy: {:.2f}%".format(acc * 100))
|
||||
print(f"Final Accuracy: {acc * 100:.2f} Final Recall:{recall:.2f}")
|
||||
print('-' * 80)
|
||||
|
||||
|
||||
|
||||
@ -55,7 +55,7 @@ class EvalKitti:
|
||||
for method in self.methods}
|
||||
|
||||
# Set thresholds to obtain comparable recall
|
||||
self.dic_thresh_conf['monopsr'] += 0.3
|
||||
self.dic_thresh_conf['monopsr'] += 0.4
|
||||
self.dic_thresh_conf['e2e-pl'] = -100
|
||||
self.dic_thresh_conf['oc-stereo'] = -100
|
||||
self.dic_thresh_conf['smoke'] = -100
|
||||
|
||||
@ -240,8 +240,8 @@ def save_txts(path_txt, all_inputs, all_outputs, all_params, mode='monoloco', ca
|
||||
if mode == 'monstereo':
|
||||
conf_scale = 0.03
|
||||
elif mode == 'monoloco_pp':
|
||||
conf_scale = 0.033
|
||||
# conf_scale = 0.036 nuScenes for having same recall
|
||||
# conf_scale = 0.033
|
||||
conf_scale = 0.035 # nuScenes for having same recall
|
||||
else:
|
||||
conf_scale = 0.055
|
||||
conf = conf_scale * (uv_box[-1]) / (bi / math.sqrt(xx ** 2 + yy ** 2 + zz ** 2))
|
||||
|
||||
@ -1,102 +0,0 @@
|
||||
|
||||
import glob
|
||||
|
||||
import numpy as np
|
||||
import torchvision
|
||||
import torch
|
||||
from PIL import Image, ImageFile
|
||||
from openpifpaf.network import nets
|
||||
from openpifpaf import decoder
|
||||
|
||||
from .process import image_transform
|
||||
|
||||
|
||||
class ImageList(torch.utils.data.Dataset):
|
||||
"""It defines transformations to apply to images and outputs of the dataloader"""
|
||||
def __init__(self, image_paths, scale):
|
||||
self.image_paths = image_paths
|
||||
self.image_paths.sort()
|
||||
self.scale = scale
|
||||
|
||||
def __getitem__(self, index):
|
||||
image_path = self.image_paths[index]
|
||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||||
with open(image_path, 'rb') as f:
|
||||
image = Image.open(f).convert('RGB')
|
||||
|
||||
if self.scale > 1.01 or self.scale < 0.99:
|
||||
image = torchvision.transforms.functional.resize(image,
|
||||
(round(self.scale * image.size[1]),
|
||||
round(self.scale * image.size[0])),
|
||||
interpolation=Image.BICUBIC)
|
||||
# PIL images are not iterables
|
||||
original_image = torchvision.transforms.functional.to_tensor(image) # 0-255 --> 0-1
|
||||
image = image_transform(image)
|
||||
|
||||
return image_path, original_image, image
|
||||
|
||||
def __len__(self):
|
||||
return len(self.image_paths)
|
||||
|
||||
|
||||
def factory_from_args(args):
|
||||
|
||||
# Merge the model_pifpaf argument
|
||||
if not args.checkpoint:
|
||||
args.checkpoint = 'resnet152' # Default model Resnet 152
|
||||
# glob
|
||||
if args.glob:
|
||||
args.images += glob.glob(args.glob)
|
||||
if not args.images:
|
||||
raise Exception("no image files given")
|
||||
|
||||
# add args.device
|
||||
args.device = torch.device('cpu')
|
||||
args.pin_memory = False
|
||||
if torch.cuda.is_available():
|
||||
args.device = torch.device('cuda')
|
||||
args.pin_memory = True
|
||||
|
||||
# Add num_workers
|
||||
args.loader_workers = 8
|
||||
|
||||
# Add visualization defaults
|
||||
args.figure_width = 10
|
||||
args.dpi_factor = 1.0
|
||||
|
||||
return args
|
||||
|
||||
|
||||
class PifPaf:
|
||||
def __init__(self, args):
|
||||
"""Instanciate the mdodel"""
|
||||
factory_from_args(args)
|
||||
model_pifpaf, _ = nets.factory_from_args(args)
|
||||
model_pifpaf = model_pifpaf.to(args.device)
|
||||
self.processor = decoder.factory_from_args(args, model_pifpaf)
|
||||
self.keypoints_whole = []
|
||||
|
||||
# Scale the keypoints to the original image size for printing (if not webcam)
|
||||
self.scale_np = np.array([args.scale, args.scale, 1] * 17).reshape(17, 3)
|
||||
|
||||
def fields(self, processed_images):
|
||||
"""Encoder for pif and paf fields"""
|
||||
fields_batch = self.processor.fields(processed_images)
|
||||
return fields_batch
|
||||
|
||||
def forward(self, image, processed_image_cpu, fields):
|
||||
"""Decoder, from pif and paf fields to keypoints"""
|
||||
self.processor.set_cpu_image(image, processed_image_cpu)
|
||||
keypoint_sets, scores = self.processor.keypoint_sets(fields)
|
||||
|
||||
if keypoint_sets.size > 0:
|
||||
self.keypoints_whole.append(np.around((keypoint_sets / self.scale_np), 1)
|
||||
.reshape(keypoint_sets.shape[0], -1).tolist())
|
||||
|
||||
pifpaf_out = [
|
||||
{'keypoints': np.around(kps / self.scale_np, 1).reshape(-1).tolist(),
|
||||
'bbox': [np.min(kps[:, 0]) / self.scale_np[0, 0], np.min(kps[:, 1]) / self.scale_np[0, 0],
|
||||
np.max(kps[:, 0]) / self.scale_np[0, 0], np.max(kps[:, 1]) / self.scale_np[0, 0]]}
|
||||
for kps in keypoint_sets
|
||||
]
|
||||
return keypoint_sets, scores, pifpaf_out
|
||||
@ -82,7 +82,7 @@ def factory_for_gt(im_size, name=None, path_gt=None, verbose=True):
|
||||
dic_gt = None
|
||||
x_factor = im_size[0] / 1600
|
||||
y_factor = im_size[1] / 900
|
||||
pixel_factor = (x_factor + y_factor) / 2 # 1.7 for MOT
|
||||
pixel_factor = (x_factor + y_factor) / 1.75 # 1.7 for MOT
|
||||
# pixel_factor = 1
|
||||
if im_size[0] / im_size[1] > 2.5:
|
||||
kk = [[718.3351, 0., 600.3891], [0., 718.3351, 181.5122], [0., 0., 1.]] # Kitti calibration
|
||||
|
||||
@ -1,146 +0,0 @@
|
||||
|
||||
# pylint: disable=too-many-statements, too-many-branches, undefined-loop-variable
|
||||
|
||||
import os
|
||||
import json
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from .visuals.printer import Printer
|
||||
from .visuals.pifpaf_show import KeypointPainter, image_canvas
|
||||
from .network import PifPaf, ImageList, Loco
|
||||
from .network.process import factory_for_gt, preprocess_pifpaf
|
||||
|
||||
|
||||
def predict(args):
|
||||
|
||||
cnt = 0
|
||||
|
||||
# Load Models
|
||||
pifpaf = PifPaf(args)
|
||||
assert args.mode in ('mono', 'stereo', 'pifpaf')
|
||||
|
||||
if 'mono' in args.mode:
|
||||
monoloco = Loco(model=args.model, net='monoloco_pp',
|
||||
device=args.device, n_dropout=args.n_dropout, p_dropout=args.dropout)
|
||||
|
||||
if 'stereo' in args.mode:
|
||||
monstereo = Loco(model=args.model, net='monstereo',
|
||||
device=args.device, n_dropout=args.n_dropout, p_dropout=args.dropout)
|
||||
|
||||
# data
|
||||
data = ImageList(args.images, scale=args.scale)
|
||||
if args.mode == 'stereo':
|
||||
assert len(data.image_paths) % 2 == 0, "Odd number of images in a stereo setting"
|
||||
bs = 2
|
||||
else:
|
||||
bs = 1
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
data, batch_size=bs, shuffle=False,
|
||||
pin_memory=args.pin_memory, num_workers=args.loader_workers)
|
||||
|
||||
for idx, (image_paths, image_tensors, processed_images_cpu) in enumerate(data_loader):
|
||||
images = image_tensors.permute(0, 2, 3, 1)
|
||||
|
||||
processed_images = processed_images_cpu.to(args.device, non_blocking=True)
|
||||
fields_batch = pifpaf.fields(processed_images)
|
||||
|
||||
# unbatch stereo pair
|
||||
for ii, (image_path, image, processed_image_cpu, fields) in enumerate(zip(
|
||||
image_paths, images, processed_images_cpu, fields_batch)):
|
||||
|
||||
if args.output_directory is None:
|
||||
splits = os.path.split(image_paths[0])
|
||||
output_path = os.path.join(splits[0], 'out_' + splits[1])
|
||||
else:
|
||||
file_name = os.path.basename(image_paths[0])
|
||||
output_path = os.path.join(args.output_directory, 'out_' + file_name)
|
||||
print('image', idx, image_path, output_path)
|
||||
keypoint_sets, scores, pifpaf_out = pifpaf.forward(image, processed_image_cpu, fields)
|
||||
|
||||
if ii == 0:
|
||||
pifpaf_outputs = [keypoint_sets, scores, pifpaf_out] # keypoints_sets and scores for pifpaf printing
|
||||
images_outputs = [image] # List of 1 or 2 elements with pifpaf tensor and monoloco original image
|
||||
pifpaf_outs = {'left': pifpaf_out}
|
||||
image_path_l = image_path
|
||||
else:
|
||||
pifpaf_outs['right'] = pifpaf_out
|
||||
|
||||
if args.mode in ('stereo', 'mono'):
|
||||
# Extract calibration matrix and ground truth file if present
|
||||
with open(image_path_l, 'rb') as f:
|
||||
pil_image = Image.open(f).convert('RGB')
|
||||
images_outputs.append(pil_image)
|
||||
|
||||
im_name = os.path.basename(image_path_l)
|
||||
im_size = (float(image.size()[1] / args.scale), float(image.size()[0] / args.scale)) # Original
|
||||
kk, dic_gt = factory_for_gt(im_size, name=im_name, path_gt=args.path_gt)
|
||||
|
||||
# Preprocess pifpaf outputs and run monoloco
|
||||
boxes, keypoints = preprocess_pifpaf(pifpaf_outs['left'], im_size, enlarge_boxes=False)
|
||||
|
||||
if args.mode == 'mono':
|
||||
print("Prediction with MonoLoco++")
|
||||
dic_out = monoloco.forward(keypoints, kk)
|
||||
dic_out = monoloco.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
||||
|
||||
else:
|
||||
print("Prediction with MonStereo")
|
||||
boxes_r, keypoints_r = preprocess_pifpaf(pifpaf_outs['right'], im_size)
|
||||
dic_out = monstereo.forward(keypoints, kk, keypoints_r=keypoints_r)
|
||||
dic_out = monstereo.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
||||
|
||||
else:
|
||||
dic_out = defaultdict(list)
|
||||
kk = None
|
||||
|
||||
factory_outputs(args, images_outputs, output_path, pifpaf_outputs, dic_out=dic_out, kk=kk)
|
||||
print('Image {}\n'.format(cnt) + '-' * 120)
|
||||
cnt += 1
|
||||
|
||||
|
||||
def factory_outputs(args, images_outputs, output_path, pifpaf_outputs, dic_out=None, kk=None):
|
||||
"""Output json files or images according to the choice"""
|
||||
|
||||
# Save json file
|
||||
if args.mode == 'pifpaf':
|
||||
keypoint_sets, scores, pifpaf_out = pifpaf_outputs[:]
|
||||
|
||||
# Visualizer
|
||||
keypoint_painter = KeypointPainter(show_box=False)
|
||||
skeleton_painter = KeypointPainter(show_box=False, color_connections=True, markersize=1, linewidth=4)
|
||||
|
||||
if 'json' in args.output_types and keypoint_sets.size > 0:
|
||||
with open(output_path + '.pifpaf.json', 'w') as f:
|
||||
json.dump(pifpaf_out, f)
|
||||
|
||||
if 'keypoints' in args.output_types:
|
||||
with image_canvas(images_outputs[0],
|
||||
output_path + '.keypoints.png',
|
||||
show=args.show,
|
||||
fig_width=args.figure_width,
|
||||
dpi_factor=args.dpi_factor) as ax:
|
||||
keypoint_painter.keypoints(ax, keypoint_sets)
|
||||
|
||||
if 'skeleton' in args.output_types:
|
||||
with image_canvas(images_outputs[0],
|
||||
output_path + '.skeleton.png',
|
||||
show=args.show,
|
||||
fig_width=args.figure_width,
|
||||
dpi_factor=args.dpi_factor) as ax:
|
||||
skeleton_painter.keypoints(ax, keypoint_sets, scores=scores)
|
||||
|
||||
else:
|
||||
if any((xx in args.output_types for xx in ['front', 'bird', 'multi'])):
|
||||
print(output_path)
|
||||
if dic_out['boxes']: # Only print in case of detections
|
||||
printer = Printer(images_outputs[1], output_path, kk, args)
|
||||
figures, axes = printer.factory_axes()
|
||||
printer.draw(figures, axes, dic_out, images_outputs[1])
|
||||
|
||||
if 'json' in args.output_types:
|
||||
with open(os.path.join(output_path + '.monoloco.json'), 'w') as ff:
|
||||
json.dump(dic_out, ff)
|
||||
@ -48,6 +48,7 @@ def cli():
|
||||
predict_parser.add_argument('--scale', default=1.0, type=float, help='change the scale of the image to preprocess')
|
||||
|
||||
# Monoloco
|
||||
predict_parser.add_argument('--net', help='Choose network: monoloco, monoloco_p, monoloco_pp, monstereo')
|
||||
predict_parser.add_argument('--model', help='path of MonoLoco model to load', required=True)
|
||||
predict_parser.add_argument('--hidden_size', type=int, help='Number of hidden units in the model', default=512)
|
||||
predict_parser.add_argument('--path_gt', help='path of json file with gt 3d localization',
|
||||
|
||||
Loading…
Reference in New Issue
Block a user