diff --git a/README.md b/README.md index ac01d55..132851f 100644 --- a/README.md +++ b/README.md @@ -3,13 +3,13 @@ gif -This library is based on three research projects: +This library is based on three research projects for monocular/stereo 3D human localization, orientation and social distancing. > __MonStereo: When Monocular and Stereo Meet at the Tail of 3D Human Localization__
> _[L. Bertoni](https://scholar.google.com/citations?user=f-4YHeMAAAAJ&hl=en), [S. Kreiss](https://www.svenkreiss.com), [T. Mordan](https://people.epfl.ch/taylor.mordan/?lang=en), [A. Alahi](https://scholar.google.com/citations?user=UIhXQ64AAAAJ&hl=en)_, ICRA21 --> [Article](https://arxiv.org/abs/2008.10913),[Video](#Todo) - + --- @@ -18,20 +18,25 @@ This library is based on three research projects: > _[L. Bertoni](https://scholar.google.com/citations?user=f-4YHeMAAAAJ&hl=en), [S. Kreiss](https://www.svenkreiss.com), [A. Alahi](https://scholar.google.com/citations?user=UIhXQ64AAAAJ&hl=en)_, T-ITS 2021 --> [Article](https://arxiv.org/abs/2009.00984), [Video](https://www.youtube.com/watch?v=r32UxHFAJ2M) - + --- > __MonoLoco: Monocular 3D Pedestrian Localization and Uncertainty Estimation__
> _[L. Bertoni](https://scholar.google.com/citations?user=f-4YHeMAAAAJ&hl=en), [S. Kreiss](https://www.svenkreiss.com), [A.Alahi](https://scholar.google.com/citations?user=UIhXQ64AAAAJ&hl=en)_, ICCV 2019 --> [Article](https://arxiv.org/abs/1906.06059), [Video](https://www.youtube.com/watch?v=ii0fqerQrec) - + +## License All projects are built upon [Openpifpaf](https://github.com/vita-epfl/openpifpaf) for the 2D keypoints and share the AGPL Licence. +This software is also available for commercial licensing via the EPFL Technology Transfer +Office (https://tto.epfl.ch/, info.tto@epfl.ch). + # Quick setup A GPU is not required, yet highly recommended for real-time performances. + The installation has been tested on OSX and Linux operating systems, with Python 3.6, 3.7, 3.8. Packages have been installed with pip and virtual environments. @@ -64,6 +69,7 @@ To check all the options: or check the file `monoloco/run.py` # Predictions +# TODO from here For a quick setup download a pifpaf and MonoLoco++ / MonStereo models from [here](https://drive.google.com/drive/folders/1jZToVMBEZQMdLB5BAIq2CdCLP5kzNo9t?usp=sharing) and save them into `data/models`.