diff --git a/README.md b/README.md
index ac01d55..132851f 100644
--- a/README.md
+++ b/README.md
@@ -3,13 +3,13 @@
-This library is based on three research projects:
+This library is based on three research projects for monocular/stereo 3D human localization, orientation and social distancing.
> __MonStereo: When Monocular and Stereo Meet at the Tail of 3D Human Localization__
> _[L. Bertoni](https://scholar.google.com/citations?user=f-4YHeMAAAAJ&hl=en), [S. Kreiss](https://www.svenkreiss.com),
[T. Mordan](https://people.epfl.ch/taylor.mordan/?lang=en), [A. Alahi](https://scholar.google.com/citations?user=UIhXQ64AAAAJ&hl=en)_, ICRA21 --> [Article](https://arxiv.org/abs/2008.10913),[Video](#Todo)
-
+
---
@@ -18,20 +18,25 @@ This library is based on three research projects:
> _[L. Bertoni](https://scholar.google.com/citations?user=f-4YHeMAAAAJ&hl=en), [S. Kreiss](https://www.svenkreiss.com),
[A. Alahi](https://scholar.google.com/citations?user=UIhXQ64AAAAJ&hl=en)_, T-ITS 2021 --> [Article](https://arxiv.org/abs/2009.00984), [Video](https://www.youtube.com/watch?v=r32UxHFAJ2M)
-
+
---
> __MonoLoco: Monocular 3D Pedestrian Localization and Uncertainty Estimation__
> _[L. Bertoni](https://scholar.google.com/citations?user=f-4YHeMAAAAJ&hl=en), [S. Kreiss](https://www.svenkreiss.com), [A.Alahi](https://scholar.google.com/citations?user=UIhXQ64AAAAJ&hl=en)_, ICCV 2019 --> [Article](https://arxiv.org/abs/1906.06059), [Video](https://www.youtube.com/watch?v=ii0fqerQrec)
-
+
+## License
All projects are built upon [Openpifpaf](https://github.com/vita-epfl/openpifpaf) for the 2D keypoints and share the AGPL Licence.
+This software is also available for commercial licensing via the EPFL Technology Transfer
+Office (https://tto.epfl.ch/, info.tto@epfl.ch).
+
# Quick setup
A GPU is not required, yet highly recommended for real-time performances.
+
The installation has been tested on OSX and Linux operating systems, with Python 3.6, 3.7, 3.8.
Packages have been installed with pip and virtual environments.
@@ -64,6 +69,7 @@ To check all the options:
or check the file `monoloco/run.py`
# Predictions
+# TODO from here
For a quick setup download a pifpaf and MonoLoco++ / MonStereo models from
[here](https://drive.google.com/drive/folders/1jZToVMBEZQMdLB5BAIq2CdCLP5kzNo9t?usp=sharing) and save them into `data/models`.