compatibility with pifpaf v0.12.1 (#7)

* update with new pifpaf version

* pylint

* pylint
This commit is contained in:
Lorenzo Bertoni 2021-02-24 11:44:57 +01:00 committed by GitHub
parent cee8050add
commit bbaf32d9e2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 18 additions and 15 deletions

View File

@ -1,4 +1,4 @@
"""Open implementation of MonoLoco++ / MonStereo.""" """Open implementation of MonoLoco++ / MonStereo."""
__version__ = '0.2.2' __version__ = '0.2.3'

View File

@ -7,11 +7,11 @@ import numpy as np
import torch import torch
import torchvision import torchvision
from ..utils import get_keypoints, pixel_to_camera, to_cartesian, back_correct_angles
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
from ..utils import get_keypoints, pixel_to_camera, to_cartesian, back_correct_angles
BF = 0.54 * 721 BF = 0.54 * 721
z_min = 4 z_min = 4
z_max = 60 z_max = 60

View File

@ -16,7 +16,7 @@ import PIL
import openpifpaf import openpifpaf
import openpifpaf.datasets as datasets import openpifpaf.datasets as datasets
from openpifpaf.predict import processor_factory, preprocess_factory from openpifpaf.predict import processor_factory, preprocess_factory
from openpifpaf import decoder, network, visualizer, show from openpifpaf import decoder, network, visualizer, show, logger
from .visuals.printer import Printer from .visuals.printer import Printer
from .network import Loco from .network import Loco
@ -45,14 +45,15 @@ def factory_from_args(args):
"Using a ShuffleNet backbone") "Using a ShuffleNet backbone")
args.checkpoint = 'shufflenetv2k30' args.checkpoint = 'shufflenetv2k30'
logger.configure(args, LOG) # logger first
# Devices # Devices
args.device = torch.device('cpu') args.device = torch.device('cpu')
args.disable_cuda = False
args.pin_memory = False args.pin_memory = False
if torch.cuda.is_available(): if torch.cuda.is_available():
args.device = torch.device('cuda') args.device = torch.device('cuda')
args.pin_memory = True args.pin_memory = True
args.loader_workers = 8 LOG.debug('neural network device: %s', args.device)
# Add visualization defaults # Add visualization defaults
args.figure_width = 10 args.figure_width = 10
@ -69,7 +70,7 @@ def factory_from_args(args):
# Configure # Configure
decoder.configure(args) decoder.configure(args)
network.configure(args) network.Factory.configure(args)
show.configure(args) show.configure(args)
visualizer.configure(args) visualizer.configure(args)
@ -105,7 +106,7 @@ def predict(args):
# unbatch (only for MonStereo) # unbatch (only for MonStereo)
for idx, (pred, meta) in enumerate(zip(pred_batch, meta_batch)): for idx, (pred, meta) in enumerate(zip(pred_batch, meta_batch)):
print('batch %d: %s', batch_i, meta['file_name']) print('batch %d: %s', batch_i, meta['file_name'])
pred = preprocess.annotations_inverse(pred, meta) pred = [ann.inverse_transform(meta) for ann in pred]
if args.output_directory is None: if args.output_directory is None:
splits = os.path.split(meta['file_name']) splits = os.path.split(meta['file_name'])

View File

@ -2,7 +2,7 @@
import argparse import argparse
from openpifpaf import decoder, network, visualizer, show from openpifpaf import decoder, network, visualizer, show, logger
def cli(): def cli():
@ -39,15 +39,17 @@ def cli():
predict_parser.add_argument('--dpi', help='image resolution', type=int, default=150) predict_parser.add_argument('--dpi', help='image resolution', type=int, default=150)
predict_parser.add_argument('--long-edge', default=None, type=int, predict_parser.add_argument('--long-edge', default=None, type=int,
help='rescale the long side of the image (aspect ratio maintained)') help='rescale the long side of the image (aspect ratio maintained)')
predict_parser.add_argument('--disable-cuda', action='store_true', help='disable CUDA')
predict_parser.add_argument('--focal', predict_parser.add_argument('--focal',
help='focal length in mm for a sensor size of 7.2x5.4 mm. Default nuScenes sensor', help='focal length in mm for a sensor size of 7.2x5.4 mm. Default nuScenes sensor',
type=float, default=5.7) type=float, default=5.7)
# Pifpaf parsers # Pifpaf parsers
decoder.cli(predict_parser) decoder.cli(parser)
network.cli(predict_parser) logger.cli(parser)
show.cli(predict_parser) network.Factory.cli(parser)
visualizer.cli(predict_parser) show.cli(parser)
visualizer.cli(parser)
# Monoloco # Monoloco
predict_parser.add_argument('--net', help='Choose network: monoloco, monoloco_p, monoloco_pp, monstereo') predict_parser.add_argument('--net', help='Choose network: monoloco, monoloco_p, monoloco_pp, monstereo')

View File

@ -111,7 +111,7 @@ class Printer:
# Initialize multi figure, resizing it for aesthetic proportion # Initialize multi figure, resizing it for aesthetic proportion
if 'multi' in self.output_types: if 'multi' in self.output_types:
assert 'bird' and 'front' not in self.output_types, \ assert 'bird' not in self.output_types and 'front' not in self.output_types, \
"multi figure cannot be print together with front or bird ones" "multi figure cannot be print together with front or bird ones"
self.y_scale = self.width / (self.height * 2) # Defined proportion self.y_scale = self.width / (self.height * 2) # Defined proportion

View File

@ -28,7 +28,7 @@ setup(
zip_safe=False, zip_safe=False,
install_requires=[ install_requires=[
'openpifpaf==v0.12b1', 'openpifpaf==v0.12.1',
'matplotlib' 'matplotlib'
], ],
extras_require={ extras_require={