Merged old monstereo
This commit is contained in:
parent
be6a5e6734
commit
ea63dd5781
@ -8,10 +8,9 @@ from contextlib import contextmanager
|
||||
import numpy as np
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Circle, FancyArrow
|
||||
|
||||
from .network.process import laplace_sampling
|
||||
from .visuals.pifpaf_show import KeypointPainter, image_canvas
|
||||
from .visuals.pifpaf_show import KeypointPainter, image_canvas, get_pifpaf_outputs, draw_orientation, social_distance_colors
|
||||
|
||||
|
||||
def social_interactions(idx, centers, angles, dds, stds=None, social_distance=False,
|
||||
@ -65,6 +64,31 @@ def social_interactions(idx, centers, angles, dds, stds=None, social_distance=Fa
|
||||
return False
|
||||
|
||||
|
||||
def is_raising_hand(keypoint):
|
||||
"""
|
||||
Returns flag of alert if someone raises their hand
|
||||
"""
|
||||
l_shoulder = 5
|
||||
l_hand = 9
|
||||
r_shoulder = 6
|
||||
r_hand = 10
|
||||
h_offset = 10
|
||||
|
||||
if ((keypoint[1][l_hand] < keypoint[1][l_shoulder] and
|
||||
keypoint[1][r_hand] < keypoint[1][r_shoulder]) and
|
||||
(keypoint[0][l_hand] - h_offset > keypoint[0][l_shoulder] and
|
||||
keypoint[0][r_hand] + h_offset < keypoint[0][r_shoulder])):
|
||||
return 'both'
|
||||
|
||||
if (keypoint[1][l_hand] < keypoint[1][l_shoulder]) and (keypoint[0][l_hand] - h_offset > keypoint[0][l_shoulder]):
|
||||
return 'left'
|
||||
|
||||
if keypoint[1][r_hand] < keypoint[1][r_shoulder] and keypoint[0][r_hand] + h_offset < keypoint[0][r_shoulder]:
|
||||
return 'right'
|
||||
|
||||
return 'none'
|
||||
|
||||
|
||||
def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False):
|
||||
"""
|
||||
Check F-formations for people close together (this function do not expect far away people):
|
||||
@ -109,32 +133,37 @@ def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False
|
||||
return False
|
||||
|
||||
|
||||
def show_social(args, image_t, output_path, annotations, dic_out):
|
||||
def show_activities(args, image_t, output_path, annotations, dic_out):
|
||||
"""Output frontal image with poses or combined with bird eye view"""
|
||||
|
||||
assert 'front' in args.output_types or 'bird' in args.output_types, "outputs allowed: front and/or bird"
|
||||
|
||||
colors = ['deepskyblue' for _ in dic_out['uv_heads']]
|
||||
if 'social_distance' in args.activities:
|
||||
colors = social_distance_colors(colors, dic_out)
|
||||
|
||||
angles = dic_out['angles']
|
||||
stds = dic_out['stds_ale']
|
||||
xz_centers = [[xx[0], xx[2]] for xx in dic_out['xyz_pred']]
|
||||
|
||||
# Prepare color for social distancing
|
||||
colors = ['r' if flag else 'deepskyblue' for flag in dic_out['social_distance']]
|
||||
|
||||
# Draw keypoints and orientation
|
||||
if 'front' in args.output_types:
|
||||
keypoint_sets, scores = get_pifpaf_outputs(annotations)
|
||||
keypoint_sets, _ = get_pifpaf_outputs(annotations)
|
||||
uv_centers = dic_out['uv_heads']
|
||||
sizes = [abs(dic_out['uv_heads'][idx][1] - uv_s[1]) / 1.5 for idx, uv_s in
|
||||
enumerate(dic_out['uv_shoulders'])]
|
||||
keypoint_painter = KeypointPainter(show_box=False)
|
||||
|
||||
r_h = 'none'
|
||||
if 'raise_hand' in args.activities:
|
||||
r_h = dic_out['raising_hand']
|
||||
|
||||
with image_canvas(image_t,
|
||||
output_path + '.front.png',
|
||||
show=args.show,
|
||||
fig_width=10,
|
||||
dpi_factor=1.0) as ax:
|
||||
keypoint_painter.keypoints(ax, keypoint_sets, colors=colors)
|
||||
keypoint_painter.keypoints(ax, keypoint_sets, colors=colors, raise_hand=r_h)
|
||||
draw_orientation(ax, uv_centers, sizes, angles, colors, mode='front')
|
||||
|
||||
if 'bird' in args.output_types:
|
||||
@ -144,21 +173,6 @@ def show_social(args, image_t, output_path, annotations, dic_out):
|
||||
draw_uncertainty(ax1, xz_centers, stds)
|
||||
|
||||
|
||||
def get_pifpaf_outputs(annotations):
|
||||
# TODO extract direct from predictions with pifpaf 0.11+
|
||||
"""Extract keypoints sets and scores from output dictionary"""
|
||||
if not annotations:
|
||||
return [], []
|
||||
keypoints_sets = np.array([dic['keypoints'] for dic in annotations]).reshape((-1, 17, 3))
|
||||
score_weights = np.ones((keypoints_sets.shape[0], 17))
|
||||
score_weights[:, 3] = 3.0
|
||||
score_weights /= np.sum(score_weights[0, :])
|
||||
kps_scores = keypoints_sets[:, :, 2]
|
||||
ordered_kps_scores = np.sort(kps_scores, axis=1)[:, ::-1]
|
||||
scores = np.sum(score_weights * ordered_kps_scores, axis=1)
|
||||
return keypoints_sets, scores
|
||||
|
||||
|
||||
@contextmanager
|
||||
def bird_canvas(output_path, z_max):
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
@ -174,56 +188,6 @@ def bird_canvas(output_path, z_max):
|
||||
print('Bird-eye-view image saved')
|
||||
|
||||
|
||||
def draw_orientation(ax, centers, sizes, angles, colors, mode):
|
||||
|
||||
if mode == 'front':
|
||||
length = 5
|
||||
fill = False
|
||||
alpha = 0.6
|
||||
zorder_circle = 0.5
|
||||
zorder_arrow = 5
|
||||
linewidth = 1.5
|
||||
edgecolor = 'k'
|
||||
radiuses = [s / 1.2 for s in sizes]
|
||||
else:
|
||||
length = 1.3
|
||||
head_width = 0.3
|
||||
linewidth = 2
|
||||
radiuses = [0.2] * len(centers)
|
||||
# length = 1.6
|
||||
# head_width = 0.4
|
||||
# linewidth = 2.7
|
||||
radiuses = [0.2] * len(centers)
|
||||
fill = True
|
||||
alpha = 1
|
||||
zorder_circle = 2
|
||||
zorder_arrow = 1
|
||||
|
||||
for idx, theta in enumerate(angles):
|
||||
color = colors[idx]
|
||||
radius = radiuses[idx]
|
||||
|
||||
if mode == 'front':
|
||||
x_arr = centers[idx][0] + (length + radius) * math.cos(theta)
|
||||
z_arr = length + centers[idx][1] + (length + radius) * math.sin(theta)
|
||||
delta_x = math.cos(theta)
|
||||
delta_z = math.sin(theta)
|
||||
head_width = max(10, radiuses[idx] / 1.5)
|
||||
|
||||
else:
|
||||
edgecolor = color
|
||||
x_arr = centers[idx][0]
|
||||
z_arr = centers[idx][1]
|
||||
delta_x = length * math.cos(theta)
|
||||
delta_z = - length * math.sin(theta) # keep into account kitti convention
|
||||
|
||||
circle = Circle(centers[idx], radius=radius, color=color, fill=fill, alpha=alpha, zorder=zorder_circle)
|
||||
arrow = FancyArrow(x_arr, z_arr, delta_x, delta_z, head_width=head_width, edgecolor=edgecolor,
|
||||
facecolor=color, linewidth=linewidth, zorder=zorder_arrow)
|
||||
ax.add_patch(circle)
|
||||
ax.add_patch(arrow)
|
||||
|
||||
|
||||
def draw_uncertainty(ax, centers, stds):
|
||||
for idx, std in enumerate(stds):
|
||||
std = stds[idx]
|
||||
|
||||
@ -14,7 +14,7 @@ import torch
|
||||
from ..utils import get_iou_matches, reorder_matches, get_keypoints, pixel_to_camera, xyz_from_distance
|
||||
from .process import preprocess_monstereo, preprocess_monoloco, extract_outputs, extract_outputs_mono,\
|
||||
filter_outputs, cluster_outputs, unnormalize_bi
|
||||
from ..activity import social_interactions
|
||||
from ..activity import social_interactions, is_raising_hand
|
||||
from .architectures import MonolocoModel, MonStereoModel
|
||||
|
||||
|
||||
@ -265,6 +265,12 @@ class Loco:
|
||||
return dic_out
|
||||
|
||||
|
||||
@staticmethod
|
||||
def raising_hand(dic_out, keypoints):
|
||||
dic_out['raising_hand'] = [is_raising_hand(keypoint) for keypoint in keypoints]
|
||||
return dic_out
|
||||
|
||||
|
||||
def median_disparity(dic_out, keypoints, keypoints_r, mask):
|
||||
"""
|
||||
Ablation study: whenever a matching is found, compute depth by median disparity instead of using MonSter
|
||||
|
||||
@ -21,7 +21,7 @@ from openpifpaf import decoder, network, visualizer, show, logger
|
||||
from .visuals.printer import Printer
|
||||
from .network import Loco
|
||||
from .network.process import factory_for_gt, preprocess_pifpaf
|
||||
from .activity import show_social
|
||||
from .activity import show_activities, show_social
|
||||
|
||||
LOG = logging.getLogger(__name__)
|
||||
|
||||
@ -239,8 +239,8 @@ def factory_outputs(args, pifpaf_outs, dic_out, output_path, kk=None):
|
||||
|
||||
elif any((xx in args.output_types for xx in ['front', 'bird', 'multi'])):
|
||||
LOG.info(output_path)
|
||||
if args.social_distance:
|
||||
show_social(args, pifpaf_outs['image'], output_path, pifpaf_outs['left'], dic_out)
|
||||
if args.activities:
|
||||
show_activities(args, pifpaf_outs['image'], output_path, pifpaf_outs['left'], dic_out)
|
||||
else:
|
||||
printer = Printer(pifpaf_outs['image'], output_path, kk, args)
|
||||
figures, axes = printer.factory_axes(dic_out)
|
||||
|
||||
@ -23,7 +23,7 @@ def cli():
|
||||
help='what to output: json keypoints skeleton for Pifpaf'
|
||||
'json bird front or multi for MonStereo')
|
||||
predict_parser.add_argument('--no_save', help='to show images', action='store_true')
|
||||
predict_parser.add_argument('--dpi', help='image resolution', type=int, default=150)
|
||||
predict_parser.add_argument('--dpi', help='image resolution', type=int, default=150)
|
||||
predict_parser.add_argument('--long-edge', default=None, type=int,
|
||||
help='rescale the long side of the image (aspect ratio maintained)')
|
||||
predict_parser.add_argument('--white-overlay',
|
||||
@ -45,15 +45,20 @@ def cli():
|
||||
show.cli(parser)
|
||||
visualizer.cli(parser)
|
||||
|
||||
predict_parser.add_argument('--mode', help='keypoints, mono, stereo', default='mono')
|
||||
predict_parser.add_argument('--model', help='path of MonoLoco/MonStereo model to load')
|
||||
predict_parser.add_argument('--net', help='only to select older MonoLoco model, otherwise use --mode')
|
||||
predict_parser.add_argument('--path_gt', help='path of json file with gt 3d localization')
|
||||
# Monoloco
|
||||
predict_parser.add_argument('--activities', nargs='+', help='Choose activities to show: social_distance, raise_hand')
|
||||
predict_parser.add_argument('--net', help='Choose network: monoloco, monoloco_p, monoloco_pp, monstereo', default='monoloco_pp')
|
||||
predict_parser.add_argument('--model', help='path of MonoLoco model to load', required=True)
|
||||
predict_parser.add_argument('--hidden_size', type=int, help='Number of hidden units in the model', default=512)
|
||||
predict_parser.add_argument('--path_gt', help='path of json file with gt 3d localization',
|
||||
default='data/arrays/names-kitti-200615-1022.json')
|
||||
predict_parser.add_argument('--transform', help='transformation for the pose', default='None')
|
||||
predict_parser.add_argument('--z_max', type=int, help='maximum meters distance for predictions', default=100)
|
||||
predict_parser.add_argument('--n_dropout', type=int, help='Epistemic uncertainty evaluation', default=0)
|
||||
predict_parser.add_argument('--dropout', type=float, help='dropout parameter', default=0.2)
|
||||
predict_parser.add_argument('--show_all', help='only predict ground-truth matches or all', action='store_true')
|
||||
|
||||
predict_parser.add_argument('--webcam', help='monstereo streaming', action='store_true')
|
||||
predict_parser.add_argument('--scale', default=0.2, type=float, help='change the scale of the webcam image')
|
||||
# Social distancing and social interactions
|
||||
predict_parser.add_argument('--social_distance', help='social', action='store_true')
|
||||
predict_parser.add_argument('--threshold_prob', type=float, help='concordance for samples', default=0.25)
|
||||
@ -122,8 +127,16 @@ def cli():
|
||||
def main():
|
||||
args = cli()
|
||||
if args.command == 'predict':
|
||||
from .predict import predict
|
||||
predict(args)
|
||||
if args.webcam:
|
||||
if 'json'in args.output_types:
|
||||
args.output_types = 'multi'
|
||||
if args.z_max == 100:
|
||||
args.z_max = 10
|
||||
from .visuals.webcam import webcam
|
||||
webcam(args)
|
||||
else:
|
||||
from .predict import predict
|
||||
predict(args)
|
||||
|
||||
elif args.command == 'prep':
|
||||
if 'nuscenes' in args.dataset:
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
# File adapted from https://github.com/vita-epfl/openpifpaf
|
||||
|
||||
from contextlib import contextmanager
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
@ -9,6 +10,7 @@ from PIL import Image
|
||||
try:
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Circle, FancyArrow
|
||||
import scipy.ndimage as ndimage
|
||||
except ImportError:
|
||||
matplotlib = None
|
||||
@ -72,12 +74,13 @@ def load_image(path, scale=1.0):
|
||||
class KeypointPainter(object):
|
||||
def __init__(self, *,
|
||||
skeleton=None,
|
||||
xy_scale=1.0, highlight=None, highlight_invisible=False,
|
||||
xy_scale=1.0, y_scale=1.0, highlight=None, highlight_invisible=False,
|
||||
show_box=True, linewidth=2, markersize=3,
|
||||
color_connections=False,
|
||||
solid_threshold=0.5):
|
||||
self.skeleton = skeleton or COCO_PERSON_SKELETON
|
||||
self.xy_scale = xy_scale
|
||||
self.y_scale = y_scale
|
||||
self.highlight = highlight
|
||||
self.highlight_invisible = highlight_invisible
|
||||
self.show_box = show_box
|
||||
@ -87,22 +90,29 @@ class KeypointPainter(object):
|
||||
self.solid_threshold = solid_threshold
|
||||
self.dashed_threshold = 0.1 # Patch to still allow force complete pose (set to zero to resume original)
|
||||
|
||||
def _draw_skeleton(self, ax, x, y, v, *, color=None):
|
||||
def _draw_skeleton(self, ax, x, y, v, *, color=None, raise_hand='none'):
|
||||
if not np.any(v > 0):
|
||||
return
|
||||
|
||||
if self.skeleton is not None:
|
||||
for ci, connection in enumerate(np.array(self.skeleton) - 1):
|
||||
c = color
|
||||
linewidth=self.linewidth
|
||||
if ((connection[0] == 5 and connection[1] == 7) or (connection[0] == 7 and connection[1] == 9)) and raise_hand in ['left','both']:
|
||||
c = 'yellow'
|
||||
linewidth = np.sqrt((x[9]-x[7])**2 + (y[9]-y[7])**2)
|
||||
if ((connection[0] == 6 and connection[1] == 8) or (connection[0] == 8 and connection[1] == 10)) and raise_hand in ['right', 'both']:
|
||||
c = 'yellow'
|
||||
linewidth = np.sqrt((x[9]-x[7])**2 + (y[9]-y[7])**2)
|
||||
if self.color_connections:
|
||||
c = matplotlib.cm.get_cmap('tab20')(ci / len(self.skeleton))
|
||||
if np.all(v[connection] > self.dashed_threshold):
|
||||
ax.plot(x[connection], y[connection],
|
||||
linewidth=self.linewidth, color=c,
|
||||
linewidth=linewidth, color=c,
|
||||
linestyle='dashed', dash_capstyle='round')
|
||||
if np.all(v[connection] > self.solid_threshold):
|
||||
ax.plot(x[connection], y[connection],
|
||||
linewidth=self.linewidth, color=c, solid_capstyle='round')
|
||||
linewidth=linewidth, color=c, solid_capstyle='round')
|
||||
|
||||
# highlight invisible keypoints
|
||||
inv_color = 'k' if self.highlight_invisible else color
|
||||
@ -169,7 +179,7 @@ class KeypointPainter(object):
|
||||
matplotlib.patches.Rectangle(
|
||||
(x - scale, y - scale), 2 * scale, 2 * scale, fill=False, color=color))
|
||||
|
||||
def keypoints(self, ax, keypoint_sets, *, scores=None, color=None, colors=None, texts=None):
|
||||
def keypoints(self, ax, keypoint_sets, *, scores=None, color=None, colors=None, texts=None, raise_hand='none'):
|
||||
if keypoint_sets is None:
|
||||
return
|
||||
|
||||
@ -181,7 +191,7 @@ class KeypointPainter(object):
|
||||
for i, kps in enumerate(np.asarray(keypoint_sets)):
|
||||
assert kps.shape[1] == 3
|
||||
x = kps[:, 0] * self.xy_scale
|
||||
y = kps[:, 1] * self.xy_scale
|
||||
y = kps[:, 1] * self.xy_scale * self.y_scale
|
||||
v = kps[:, 2]
|
||||
|
||||
if colors is not None:
|
||||
@ -190,7 +200,11 @@ class KeypointPainter(object):
|
||||
if isinstance(color, (int, np.integer)):
|
||||
color = matplotlib.cm.get_cmap('tab20')((color % 20 + 0.05) / 20)
|
||||
|
||||
self._draw_skeleton(ax, x, y, v, color=color)
|
||||
self._draw_skeleton(ax, x, y, v, color=color, raise_hand=raise_hand[:][i])
|
||||
score = scores[i] if scores is not None else None
|
||||
z_str = str(score).split(sep='.')
|
||||
text = z_str[0] + '.' + z_str[1][0]
|
||||
self._draw_text(ax, x-2, y, v, text, color)
|
||||
if self.show_box:
|
||||
score = scores[i] if scores is not None else None
|
||||
self._draw_box(ax, x, y, v, color, score)
|
||||
@ -334,3 +348,79 @@ def white_screen(ax, alpha=0.9):
|
||||
plt.Rectangle((0, 0), 1, 1, transform=ax.transAxes, alpha=alpha,
|
||||
facecolor='white')
|
||||
)
|
||||
|
||||
|
||||
def get_pifpaf_outputs(annotations):
|
||||
# TODO extract direct from predictions with pifpaf 0.11+
|
||||
"""Extract keypoints sets and scores from output dictionary"""
|
||||
if not annotations:
|
||||
return [], []
|
||||
keypoints_sets = np.array([dic['keypoints']
|
||||
for dic in annotations]).reshape((-1, 17, 3))
|
||||
score_weights = np.ones((keypoints_sets.shape[0], 17))
|
||||
score_weights[:, 3] = 3.0
|
||||
score_weights /= np.sum(score_weights[0, :])
|
||||
kps_scores = keypoints_sets[:, :, 2]
|
||||
ordered_kps_scores = np.sort(kps_scores, axis=1)[:, ::-1]
|
||||
scores = np.sum(score_weights * ordered_kps_scores, axis=1)
|
||||
return keypoints_sets, scores
|
||||
|
||||
|
||||
def draw_orientation(ax, centers, sizes, angles, colors, mode):
|
||||
|
||||
if mode == 'front':
|
||||
length = 5
|
||||
fill = False
|
||||
alpha = 0.6
|
||||
zorder_circle = 0.5
|
||||
zorder_arrow = 5
|
||||
linewidth = 1.5
|
||||
edgecolor = 'k'
|
||||
radiuses = [s / 1.2 for s in sizes]
|
||||
else:
|
||||
length = 1.3
|
||||
head_width = 0.3
|
||||
linewidth = 2
|
||||
radiuses = [0.2] * len(centers)
|
||||
# length = 1.6
|
||||
# head_width = 0.4
|
||||
# linewidth = 2.7
|
||||
radiuses = [0.2] * len(centers)
|
||||
fill = True
|
||||
alpha = 1
|
||||
zorder_circle = 2
|
||||
zorder_arrow = 1
|
||||
|
||||
for idx, theta in enumerate(angles):
|
||||
color = colors[idx]
|
||||
radius = radiuses[idx]
|
||||
|
||||
if mode == 'front':
|
||||
x_arr = centers[idx][0] + (length + radius) * math.cos(theta)
|
||||
z_arr = length + centers[idx][1] + \
|
||||
(length + radius) * math.sin(theta)
|
||||
delta_x = math.cos(theta)
|
||||
delta_z = math.sin(theta)
|
||||
head_width = max(10, radiuses[idx] / 1.5)
|
||||
|
||||
else:
|
||||
edgecolor = color
|
||||
x_arr = centers[idx][0]
|
||||
z_arr = centers[idx][1]
|
||||
delta_x = length * math.cos(theta)
|
||||
# keep into account kitti convention
|
||||
delta_z = - length * math.sin(theta)
|
||||
|
||||
circle = Circle(centers[idx], radius=radius, color=color,
|
||||
fill=fill, alpha=alpha, zorder=zorder_circle)
|
||||
arrow = FancyArrow(x_arr, z_arr, delta_x, delta_z, head_width=head_width, edgecolor=edgecolor,
|
||||
facecolor=color, linewidth=linewidth, zorder=zorder_arrow)
|
||||
ax.add_patch(circle)
|
||||
ax.add_patch(arrow)
|
||||
|
||||
|
||||
def social_distance_colors(colors, dic_out):
|
||||
# Prepare color for social distancing
|
||||
colors = ['r' if flag else colors[idx] for idx,flag in enumerate(dic_out['social_distance'])]
|
||||
return colors
|
||||
|
||||
|
||||
@ -8,6 +8,7 @@ from collections import OrderedDict
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
from .pifpaf_show import KeypointPainter, get_pifpaf_outputs, draw_orientation, social_distance_colors
|
||||
from ..utils import pixel_to_camera
|
||||
|
||||
|
||||
@ -59,21 +60,25 @@ class Printer:
|
||||
self.kk = kk
|
||||
self.output_types = args.output_types
|
||||
self.z_max = args.z_max # set max distance to show instances
|
||||
self.show = args.show
|
||||
self.show_all = args.show_all
|
||||
self.save = not args.no_save
|
||||
self.show_all = args.show_all or args.webcam
|
||||
self.show = args.show_all or args.webcam
|
||||
self.save = not args.no_save and not args.webcam
|
||||
self.plt_close = not args.webcam
|
||||
self.args = args
|
||||
|
||||
# define image attributes
|
||||
self.attr = image_attributes(args.dpi, args.output_types)
|
||||
|
||||
def _process_results(self, dic_ann):
|
||||
# Include the vectors inside the interval given by z_max
|
||||
self.angles = dic_ann['angles']
|
||||
self.stds_ale = dic_ann['stds_ale']
|
||||
self.stds_epi = dic_ann['stds_epi']
|
||||
self.gt = dic_ann['gt'] # regulate ground-truth matching
|
||||
self.xx_gt = [xx[0] for xx in dic_ann['xyz_real']]
|
||||
self.xx_pred = [xx[0] for xx in dic_ann['xyz_pred']]
|
||||
|
||||
self.xz_centers = [[xx[0], xx[2]] for xx in dic_ann['xyz_pred']]
|
||||
# Set maximum distance
|
||||
self.dd_pred = dic_ann['dds_pred']
|
||||
self.dd_real = dic_ann['dds_real']
|
||||
@ -86,6 +91,10 @@ class Printer:
|
||||
for idx, xx in enumerate(dic_ann['xyz_pred'])]
|
||||
|
||||
self.uv_heads = dic_ann['uv_heads']
|
||||
self.centers = self.uv_heads
|
||||
if 'multi' in self.output_types:
|
||||
for center in self.centers:
|
||||
center[1] = center[1] * self.y_scale
|
||||
self.uv_shoulders = dic_ann['uv_shoulders']
|
||||
self.boxes = dic_ann['boxes']
|
||||
self.boxes_gt = dic_ann['boxes_gt']
|
||||
@ -107,7 +116,8 @@ class Printer:
|
||||
figures = []
|
||||
|
||||
# Process the annotation dictionary of monoloco
|
||||
self._process_results(dic_out)
|
||||
if dic_out:
|
||||
self._process_results(dic_out)
|
||||
|
||||
# Initialize multi figure, resizing it for aesthetic proportion
|
||||
if 'multi' in self.output_types:
|
||||
@ -165,7 +175,31 @@ class Printer:
|
||||
axes.append(ax1)
|
||||
return figures, axes
|
||||
|
||||
def draw(self, figures, axes, image):
|
||||
|
||||
def social_distance_front(self, axis, colors, annotations, dic_out):
|
||||
sizes = [abs(self.centers[idx][1] - uv_s[1]*self.y_scale) / 1.5 for idx, uv_s in
|
||||
enumerate(self.uv_shoulders)]
|
||||
|
||||
keypoint_sets, _ = get_pifpaf_outputs(annotations)
|
||||
keypoint_painter = KeypointPainter(show_box=False, y_scale=self.y_scale)
|
||||
r_h = 'none'
|
||||
if 'raise_hand' in self.args.activities:
|
||||
r_h = dic_out['raising_hand']
|
||||
keypoint_painter.keypoints(
|
||||
axis, keypoint_sets, scores=self.dd_pred,colors=colors, raise_hand=r_h)
|
||||
draw_orientation(axis, self.centers,
|
||||
sizes, self.angles, colors, mode='front')
|
||||
|
||||
|
||||
def social_distance_bird(self, axis, colors):
|
||||
draw_orientation(axis, self.xz_centers, [], self.angles, colors, mode='bird')
|
||||
|
||||
def draw(self, figures, axes, image, dic_out, annotations):
|
||||
|
||||
if self.args.activities:
|
||||
colors = ['deepskyblue' for _ in self.uv_heads]
|
||||
if 'social_distance' in self.args.activities:
|
||||
colors = social_distance_colors(colors, dic_out)
|
||||
|
||||
# whether to include instances that don't match the ground-truth
|
||||
iterator = range(len(self.zz_pred)) if self.show_all else range(len(self.zz_gt))
|
||||
@ -176,13 +210,20 @@ class Printer:
|
||||
number = dict(flag=False, num=97)
|
||||
if any(xx in self.output_types for xx in ['front', 'multi']):
|
||||
number['flag'] = True # add numbers
|
||||
self.mpl_im0.set_data(image)
|
||||
if not self.args.activities or 'social_distance' not in self.args.activities:
|
||||
self.mpl_im0.set_data(image)
|
||||
for idx in iterator:
|
||||
if any(xx in self.output_types for xx in ['front', 'multi']) and self.zz_pred[idx] > 0:
|
||||
self._draw_front(axes[0],
|
||||
self.dd_pred[idx],
|
||||
idx,
|
||||
number)
|
||||
if self.args.activities:
|
||||
if 'social_distance' in self.args.activities:
|
||||
self.social_distance_front(axes[0], colors, annotations, dic_out)
|
||||
elif 'raise_hand' in self.args.activities:
|
||||
self.social_distance_front(axes[0], colors, annotations, dic_out)
|
||||
else:
|
||||
self._draw_front(axes[0],
|
||||
self.dd_pred[idx],
|
||||
idx,
|
||||
number)
|
||||
number['num'] += 1
|
||||
|
||||
# Draw the bird figure
|
||||
@ -190,6 +231,9 @@ class Printer:
|
||||
for idx in iterator:
|
||||
if any(xx in self.output_types for xx in ['bird', 'multi']) and self.zz_pred[idx] > 0:
|
||||
|
||||
if self.args.activities:
|
||||
if 'social_distance' in self.args.activities:
|
||||
self.social_distance_bird(axes[1], colors)
|
||||
# Draw ground truth and uncertainty
|
||||
self._draw_uncertainty(axes, idx)
|
||||
|
||||
@ -206,7 +250,10 @@ class Printer:
|
||||
fig.savefig(self.output_path + self.extensions[idx], bbox_inches='tight', dpi=self.attr['dpi'])
|
||||
if self.show:
|
||||
fig.show()
|
||||
plt.close(fig)
|
||||
if self.plt_close:
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
|
||||
def _draw_front(self, ax, z, idx, number):
|
||||
|
||||
@ -360,7 +407,8 @@ class Printer:
|
||||
ax.set_axis_off()
|
||||
ax.set_xlim(0, self.width)
|
||||
ax.set_ylim(self.height, 0)
|
||||
self.mpl_im0 = ax.imshow(self.im)
|
||||
if not self.args.activities or 'social_distance' not in self.args.activities:
|
||||
self.mpl_im0 = ax.imshow(self.im)
|
||||
ax.get_xaxis().set_visible(False)
|
||||
ax.get_yaxis().set_visible(False)
|
||||
|
||||
|
||||
196
monoloco/visuals/webcam.py
Normal file
196
monoloco/visuals/webcam.py
Normal file
@ -0,0 +1,196 @@
|
||||
# pylint: disable=W0212
|
||||
"""
|
||||
Webcam demo application
|
||||
|
||||
Implementation adapted from https://github.com/vita-epfl/openpifpaf/blob/master/openpifpaf/webcam.py
|
||||
|
||||
"""
|
||||
|
||||
import time
|
||||
import os
|
||||
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
from PIL import Image
|
||||
import cv2
|
||||
|
||||
from openpifpaf import decoder, network, visualizer, show
|
||||
import openpifpaf.datasets as datasets
|
||||
from openpifpaf.predict import processor_factory, preprocess_factory
|
||||
|
||||
from ..visuals import Printer
|
||||
from ..network import Loco
|
||||
from ..network.process import preprocess_pifpaf, factory_for_gt
|
||||
|
||||
OPENPIFPAF_PATH = 'data/models/shufflenetv2k30-201104-224654-cocokp-d75ed641.pkl'
|
||||
|
||||
|
||||
def factory_from_args(args):
|
||||
|
||||
# Model
|
||||
if not args.checkpoint:
|
||||
if os.path.exists(OPENPIFPAF_PATH):
|
||||
args.checkpoint = OPENPIFPAF_PATH
|
||||
else:
|
||||
args.checkpoint = 'shufflenetv2k30'
|
||||
|
||||
# Devices
|
||||
args.device = torch.device('cpu')
|
||||
args.pin_memory = False
|
||||
if torch.cuda.is_available():
|
||||
args.device = torch.device('cuda')
|
||||
args.pin_memory = True
|
||||
|
||||
# Add visualization defaults
|
||||
args.figure_width = 10
|
||||
args.dpi_factor = 1.0
|
||||
|
||||
if args.net == 'monstereo':
|
||||
args.batch_size = 2
|
||||
else:
|
||||
args.batch_size = 1
|
||||
|
||||
# Make default pifpaf argument
|
||||
args.force_complete_pose = True
|
||||
|
||||
# Configure
|
||||
decoder.configure(args)
|
||||
network.Factory.configure(args)
|
||||
show.configure(args)
|
||||
visualizer.configure(args)
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def webcam(args):
|
||||
|
||||
args = factory_from_args(args)
|
||||
# Load Models
|
||||
net = Loco(model=args.model, net=args.net, device=args.device,
|
||||
n_dropout=args.n_dropout, p_dropout=args.dropout)
|
||||
|
||||
processor, model = processor_factory(args)
|
||||
preprocess = preprocess_factory(args)
|
||||
|
||||
# Start recording
|
||||
cam = cv2.VideoCapture(0)
|
||||
visualizer_monstereo = None
|
||||
|
||||
while True:
|
||||
start = time.time()
|
||||
ret, frame = cam.read()
|
||||
image = cv2.resize(frame, None, fx=args.scale, fy=args.scale)
|
||||
height, width, _ = image.shape
|
||||
print('resized image size: {}'.format(image.shape))
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
pil_image = Image.fromarray(image)
|
||||
|
||||
data = datasets.PilImageList(
|
||||
make_list(pil_image), preprocess=preprocess)
|
||||
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
data, batch_size=1, shuffle=False,
|
||||
pin_memory=False, collate_fn=datasets.collate_images_anns_meta)
|
||||
|
||||
for (image_tensors_batch, _, meta_batch) in data_loader:
|
||||
pred_batch = processor.batch(
|
||||
model, image_tensors_batch, device=args.device)
|
||||
|
||||
for idx, (pred, meta) in enumerate(zip(pred_batch, meta_batch)):
|
||||
pred = [ann.inverse_transform(meta) for ann in pred]
|
||||
|
||||
if idx == 0:
|
||||
pifpaf_outs = {
|
||||
'pred': pred,
|
||||
'left': [ann.json_data() for ann in pred],
|
||||
'image': image}
|
||||
else:
|
||||
pifpaf_outs['right'] = [ann.json_data() for ann in pred]
|
||||
|
||||
if not ret:
|
||||
break
|
||||
key = cv2.waitKey(1)
|
||||
if key % 256 == 27:
|
||||
# ESC pressed
|
||||
print("Escape hit, closing...")
|
||||
break
|
||||
intrinsic_size = [xx * 1.3 for xx in pil_image.size]
|
||||
kk, dic_gt = factory_for_gt(intrinsic_size,
|
||||
focal_length=args.focal,
|
||||
path_gt=args.path_gt) # better intrinsics for mac camera
|
||||
boxes, keypoints = preprocess_pifpaf(
|
||||
pifpaf_outs['left'], (width, height))
|
||||
|
||||
dic_out = net.forward(keypoints, kk)
|
||||
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
||||
|
||||
if args.activities:
|
||||
if 'social_distance' in args.activities:
|
||||
dic_out = net.social_distance(dic_out, args)
|
||||
if 'raise_hand' in args.activities:
|
||||
dic_out = net.raising_hand(dic_out, keypoints)
|
||||
if visualizer_monstereo is None: # it is, at the beginning
|
||||
visualizer_monstereo = VisualizerMonstereo(kk,
|
||||
args)(pil_image) # create it with the first image
|
||||
visualizer_monstereo.send(None)
|
||||
|
||||
print(dic_out)
|
||||
visualizer_monstereo.send((pil_image, dic_out, pifpaf_outs))
|
||||
|
||||
end = time.time()
|
||||
print("run-time: {:.2f} ms".format((end-start)*1000))
|
||||
|
||||
cam.release()
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
class VisualizerMonstereo:
|
||||
def __init__(self, kk, args):
|
||||
self.kk = kk
|
||||
self.args = args
|
||||
|
||||
def __call__(self, first_image, fig_width=1.0, **kwargs):
|
||||
if 'figsize' not in kwargs:
|
||||
kwargs['figsize'] = (fig_width, fig_width *
|
||||
first_image.size[0] / first_image.size[1])
|
||||
|
||||
printer = Printer(first_image, output_path="",
|
||||
kk=self.kk, args=self.args)
|
||||
|
||||
figures, axes = printer.factory_axes(None)
|
||||
|
||||
for fig in figures:
|
||||
fig.show()
|
||||
|
||||
while True:
|
||||
image, dic_out, pifpaf_outs = yield
|
||||
|
||||
# Clears previous annotations between frames
|
||||
axes[0].patches = []
|
||||
axes[0].lines = []
|
||||
axes[0].texts = []
|
||||
if len(axes) > 1:
|
||||
axes[1].patches = []
|
||||
axes[1].lines = [axes[1].lines[0], axes[1].lines[1]]
|
||||
axes[1].texts = []
|
||||
|
||||
if dic_out:
|
||||
printer._process_results(dic_out)
|
||||
printer.draw(figures, axes, image, dic_out, pifpaf_outs['left'])
|
||||
mypause(0.01)
|
||||
|
||||
|
||||
def mypause(interval):
|
||||
manager = plt._pylab_helpers.Gcf.get_active()
|
||||
if manager is not None:
|
||||
canvas = manager.canvas
|
||||
if canvas.figure.stale:
|
||||
canvas.draw_idle()
|
||||
canvas.start_event_loop(interval)
|
||||
else:
|
||||
time.sleep(interval)
|
||||
|
||||
|
||||
def make_list(*args):
|
||||
return list(args)
|
||||
Loading…
Reference in New Issue
Block a user