import numpy as np def calculate_iou(box1, box2): # Calculate the (x1, y1, x2, y2) coordinates of the intersection of box1 and box2. Calculate its Area. # box1 = [-3, 8.5, 3, 11.5] # box2 = [-3, 9.5, 3, 12.5] # box1 = [1086.84, 156.24, 1181.62, 319.12] # box2 = [1078.333357, 159.086347, 1193.771014, 322.239107] xi1 = max(box1[0], box2[0]) yi1 = max(box1[1], box2[1]) xi2 = min(box1[2], box2[2]) yi2 = min(box1[3], box2[3]) inter_area = max((xi2 - xi1), 0) * max((yi2 - yi1), 0) # Max keeps into account not overlapping box # Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B) box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1]) box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1]) union_area = box1_area + box2_area - inter_area # compute the IoU iou = inter_area / union_area return iou def get_iou_matrix(boxes, boxes_gt): """ Get IoU matrix between predicted and ground truth boxes Dim: (boxes, boxes_gt) """ iou_matrix = np.zeros((len(boxes), len(boxes_gt))) for idx, box in enumerate(boxes): for idx_gt, box_gt in enumerate(boxes_gt): iou_matrix[idx, idx_gt] = calculate_iou(box, box_gt) return iou_matrix def get_iou_matches(boxes, boxes_gt, iou_min=0.3): """From 2 sets of boxes and a minimum threshold, compute the matching indices for IoU matches""" matches = [] used = [] if not boxes or not boxes_gt: return [] confs = [box[4] for box in boxes] indices = list(np.argsort(confs)) for idx in indices[::-1]: box = boxes[idx] ious = [] for idx_gt, box_gt in enumerate(boxes_gt): iou = calculate_iou(box, box_gt) ious.append(iou) idx_gt_max = int(np.argmax(ious)) if (ious[idx_gt_max] >= iou_min) and (idx_gt_max not in used): matches.append((idx, idx_gt_max)) used.append(idx_gt_max) return matches def get_iou_matches_matrix(boxes, boxes_gt, thresh): """From 2 sets of boxes and a minimum threshold, compute the matching indices for IoU matchings""" iou_matrix = get_iou_matrix(boxes, boxes_gt) if not iou_matrix.size: return [] matches = [] iou_max = np.max(iou_matrix) while iou_max > thresh: # Extract the indeces of the max args_max = np.unravel_index(np.argmax(iou_matrix, axis=None), iou_matrix.shape) matches.append(args_max) iou_matrix[args_max[0], :] = 0 iou_matrix[:, args_max[1]] = 0 iou_max = np.max(iou_matrix) return matches def reorder_matches(matches, boxes, mode='left_rigth'): """ Reorder a list of (idx, idx_gt) matches based on position of the detections in the image ordered_boxes = (5, 6, 7, 0, 1, 4, 2, 4) matches = [(0, x), (2,x), (4,x), (3,x), (5,x)] Output --> [(5, x), (0, x), (3, x), (2, x), (5, x)] """ assert mode == 'left_right' # Order the boxes based on the left-right position in the image and ordered_boxes = np.argsort([box[0] for box in boxes]) # indices of boxes ordered from left to right matches_left = [idx for (idx, _) in matches] return [matches[matches_left.index(idx_boxes)] for idx_boxes in ordered_boxes if idx_boxes in matches_left]