* change reorder flag * make social distance as separate function * temp * temp * refactor names pifpaf outputs * verify conflicting options * add logging * custom camera parameters * convert back to print * add pyc files
190 lines
6.6 KiB
Python
190 lines
6.6 KiB
Python
# pylint: disable=too-many-statements, too-many-branches, undefined-loop-variable
|
|
|
|
"""
|
|
Adapted from https://github.com/vita-epfl/openpifpaf/blob/master/openpifpaf/predict.py
|
|
"""
|
|
|
|
import os
|
|
import glob
|
|
import json
|
|
import logging
|
|
from collections import defaultdict
|
|
|
|
|
|
import torch
|
|
import PIL
|
|
import openpifpaf
|
|
import openpifpaf.datasets as datasets
|
|
from openpifpaf.predict import processor_factory, preprocess_factory
|
|
from openpifpaf import decoder, network, visualizer, show
|
|
|
|
from .visuals.printer import Printer
|
|
from .network import Loco
|
|
from .network.process import factory_for_gt, preprocess_pifpaf
|
|
from .activity import show_social
|
|
|
|
LOG = logging.getLogger(__name__)
|
|
|
|
OPENPIFPAF_PATH = 'data/models/shufflenetv2k30-201104-224654-cocokp-d75ed641.pkl' # Default model
|
|
|
|
|
|
def factory_from_args(args):
|
|
|
|
# Data
|
|
if args.glob:
|
|
args.images += glob.glob(args.glob)
|
|
if not args.images:
|
|
raise Exception("no image files given")
|
|
|
|
# Model
|
|
if not args.checkpoint:
|
|
if os.path.exists(OPENPIFPAF_PATH):
|
|
args.checkpoint = OPENPIFPAF_PATH
|
|
else:
|
|
LOG.info("Checkpoint for OpenPifPaf not specified and default model not found in 'data/models'. "
|
|
"Using a ShuffleNet backbone")
|
|
args.checkpoint = 'shufflenetv2k30'
|
|
|
|
# Devices
|
|
args.device = torch.device('cpu')
|
|
args.disable_cuda = False
|
|
args.pin_memory = False
|
|
if torch.cuda.is_available():
|
|
args.device = torch.device('cuda')
|
|
args.pin_memory = True
|
|
args.loader_workers = 8
|
|
|
|
# Add visualization defaults
|
|
args.figure_width = 10
|
|
args.dpi_factor = 1.0
|
|
|
|
if args.net == 'monstereo':
|
|
args.batch_size = 2
|
|
else:
|
|
args.batch_size = 1
|
|
|
|
# Make default pifpaf argument
|
|
args.force_complete_pose = True
|
|
LOG.info("Force complete pose is active")
|
|
|
|
# Configure
|
|
decoder.configure(args)
|
|
network.configure(args)
|
|
show.configure(args)
|
|
visualizer.configure(args)
|
|
|
|
return args
|
|
|
|
|
|
def predict(args):
|
|
|
|
cnt = 0
|
|
args = factory_from_args(args)
|
|
|
|
# Load Models
|
|
assert args.net in ('monoloco_pp', 'monstereo', 'pifpaf')
|
|
if args.net in ('monoloco_pp', 'monstereo'):
|
|
net = Loco(model=args.model, net=args.net, device=args.device, n_dropout=args.n_dropout, p_dropout=args.dropout)
|
|
|
|
# data
|
|
processor, model = processor_factory(args)
|
|
preprocess = preprocess_factory(args)
|
|
|
|
# data
|
|
data = datasets.ImageList(args.images, preprocess=preprocess)
|
|
if args.net == 'monstereo':
|
|
assert len(data.image_paths) % 2 == 0, "Odd number of images in a stereo setting"
|
|
|
|
data_loader = torch.utils.data.DataLoader(
|
|
data, batch_size=args.batch_size, shuffle=False,
|
|
pin_memory=False, collate_fn=datasets.collate_images_anns_meta)
|
|
|
|
for batch_i, (image_tensors_batch, _, meta_batch) in enumerate(data_loader):
|
|
pred_batch = processor.batch(model, image_tensors_batch, device=args.device)
|
|
|
|
# unbatch (only for MonStereo)
|
|
for idx, (pred, meta) in enumerate(zip(pred_batch, meta_batch)):
|
|
print('batch %d: %s', batch_i, meta['file_name'])
|
|
pred = preprocess.annotations_inverse(pred, meta)
|
|
|
|
if args.output_directory is None:
|
|
splits = os.path.split(meta['file_name'])
|
|
output_path = os.path.join(splits[0], 'out_' + splits[1])
|
|
else:
|
|
file_name = os.path.basename(meta['file_name'])
|
|
output_path = os.path.join(args.output_directory, 'out_' + file_name)
|
|
print('image', batch_i, meta['file_name'], output_path)
|
|
|
|
if idx == 0:
|
|
with open(meta_batch[0]['file_name'], 'rb') as f:
|
|
cpu_image = PIL.Image.open(f).convert('RGB')
|
|
pifpaf_outs = {
|
|
'pred': pred,
|
|
'left': [ann.json_data() for ann in pred],
|
|
'image': cpu_image}
|
|
else:
|
|
pifpaf_outs['right'] = [ann.json_data() for ann in pred]
|
|
|
|
# 3D Predictions
|
|
if args.net in ('monoloco_pp', 'monstereo'):
|
|
|
|
im_name = os.path.basename(meta['file_name'])
|
|
im_size = (cpu_image.size[0], cpu_image.size[1]) # Original
|
|
kk, dic_gt = factory_for_gt(im_size, name=im_name, path_gt=args.path_gt)
|
|
|
|
# Preprocess pifpaf outputs and run monoloco
|
|
boxes, keypoints = preprocess_pifpaf(pifpaf_outs['left'], im_size, enlarge_boxes=False)
|
|
|
|
if args.net == 'monoloco_pp':
|
|
LOG.info("Prediction with MonoLoco++")
|
|
dic_out = net.forward(keypoints, kk)
|
|
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
|
if args.social_distance:
|
|
dic_out = net.social_distance(dic_out, args)
|
|
|
|
else:
|
|
LOG.info("Prediction with MonStereo")
|
|
boxes_r, keypoints_r = preprocess_pifpaf(pifpaf_outs['right'], im_size)
|
|
dic_out = net.forward(keypoints, kk, keypoints_r=keypoints_r)
|
|
dic_out = net.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
|
|
|
else:
|
|
dic_out = defaultdict(list)
|
|
kk = None
|
|
|
|
# Outputs
|
|
factory_outputs(args, pifpaf_outs, dic_out, output_path, kk=kk)
|
|
LOG.info('Image {}\n'.format(cnt) + '-' * 120)
|
|
cnt += 1
|
|
|
|
|
|
def factory_outputs(args, pifpaf_outs, dic_out, output_path, kk=None):
|
|
"""Output json files or images according to the choice"""
|
|
|
|
# Verify conflicting options
|
|
if any((xx in args.output_types for xx in ['front', 'bird', 'multi'])):
|
|
assert args.net != 'pifpaf', "please use pifpaf original arguments"
|
|
if args.social_distance:
|
|
assert args.net == 'monoloco_pp', "Social distancing only works with MonoLoco++ network"
|
|
|
|
if args.net == 'pifpaf':
|
|
annotation_painter = openpifpaf.show.AnnotationPainter()
|
|
with openpifpaf.show.image_canvas(pifpaf_outs['image'], output_path) as ax:
|
|
annotation_painter.annotations(ax, pifpaf_outs['pred'])
|
|
|
|
elif any((xx in args.output_types for xx in ['front', 'bird', 'multi'])):
|
|
LOG.info(output_path)
|
|
if args.social_distance:
|
|
show_social(args, pifpaf_outs['image'], output_path, pifpaf_outs['left'], dic_out)
|
|
else:
|
|
printer = Printer(pifpaf_outs['image'], output_path, kk, args)
|
|
figures, axes = printer.factory_axes(dic_out)
|
|
printer.draw(figures, axes, pifpaf_outs['image'])
|
|
|
|
elif 'json' in args.output_types:
|
|
with open(os.path.join(output_path + '.monoloco.json'), 'w') as ff:
|
|
json.dump(dic_out, ff)
|
|
|
|
else:
|
|
LOG.info("No output saved, please select one among front, bird, multi, or pifpaf options")
|