monoloco/src/eval/kitti_eval.py
2019-05-21 11:23:45 +02:00

408 lines
17 KiB
Python

import os
import math
import logging
from collections import defaultdict
import json
import copy
import datetime
from utils.misc import get_idx_max
from utils.kitti import check_conditions, get_category, split_training, parse_ground_truth
from visuals.results import print_results
class KittiEval:
"""
Evaluate Monoloco code on KITTI dataset and compare it with:
- Mono3D
- 3DOP
- MonoDepth
"""
dic_stds = defaultdict(lambda: defaultdict(list))
dic_stats = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float))))
dic_cnt = defaultdict(int)
errors = defaultdict(lambda: defaultdict(list))
def __init__(self, show=False, thresh_iou_our=0.3, thresh_iou_m3d=0.5, thresh_conf_m3d=0.5, thresh_conf_our=0.3):
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
self.show = show
self.dir_gt = os.path.join('data', 'kitti', 'gt')
self.dir_m3d = os.path.join('data', 'kitti', 'm3d')
self.dir_3dop = os.path.join('data', 'kitti', '3dop')
self.dir_md = os.path.join('data', 'kitti', 'monodepth')
self.dir_our = os.path.join('data', 'kitti', 'monoloco')
path_train = os.path.join('splits', 'kitti_train.txt')
path_val = os.path.join('splits', 'kitti_val.txt')
dir_logs = os.path.join('data', 'logs')
assert dir_logs, "No directory to save final statistics"
now = datetime.datetime.now()
now_time = now.strftime("%Y%m%d-%H%M")[2:]
self.path_results = os.path.join(dir_logs, 'eval-' + now_time + '.json')
assert os.path.exists(self.dir_m3d) and os.path.exists(self.dir_our) \
and os.path.exists(self.dir_3dop)
self.clusters = ['easy', 'moderate', 'hard', 'all', '6', '10', '15', '20', '25', '30', '40', '50', '>50']
self.dic_thresh_iou = {'m3d': thresh_iou_m3d, '3dop': thresh_iou_m3d, 'md': thresh_iou_our, 'our': thresh_iou_our}
self.dic_thresh_conf = {'m3d': thresh_conf_m3d, '3dop': thresh_conf_m3d, 'our': thresh_conf_our}
# Extract validation images for evaluation
names_gt = tuple(os.listdir(self.dir_gt))
_, self.set_val = split_training(names_gt, path_train, path_val)
def run(self):
"""Evaluate Monoloco methods on ALP and ALE metrics"""
cnt_gt = 0
# Iterate over each ground truth file in the training set
for name in self.set_val:
path_gt = os.path.join(self.dir_gt, name)
path_m3d = os.path.join(self.dir_m3d, name)
path_our = os.path.join(self.dir_our, name)
path_3dop = os.path.join(self.dir_3dop, name)
path_md = os.path.join(self.dir_md, name)
# Iterate over each line of the gt file and save box location and distances
boxes_gt, dds_gt, truncs_gt, occs_gt = parse_ground_truth(path_gt)
cnt_gt += len(boxes_gt)
# Extract annotations for the same file
if len(boxes_gt) > 0:
boxes_m3d, dds_m3d = self._parse_txts(path_m3d, method='m3d')
boxes_3dop, dds_3dop = self._parse_txts(path_3dop, method='3dop')
boxes_md, dds_md = self._parse_txts(path_md, method='md')
boxes_our, dds_our, stds_ale, stds_epi, kk_list, dds_geom, xyzs, xy_kps = \
self._parse_txts(path_our, method='our')
# Compute the error with ground truth
self._estimate_error_base(boxes_m3d, dds_m3d, boxes_gt, dds_gt, truncs_gt, occs_gt, method='m3d')
self._estimate_error_base(boxes_3dop, dds_3dop, boxes_gt, dds_gt, truncs_gt, occs_gt, method='3dop')
self._estimate_error_base(boxes_md, dds_md, boxes_gt, dds_gt, truncs_gt, occs_gt, method='md')
self._estimate_error_mloco(boxes_our, dds_our, stds_ale, stds_epi, kk_list, dds_geom, xyzs, xy_kps,
boxes_gt, dds_gt, truncs_gt, occs_gt, name)
# Iterate over all the files together to find a pool of common annotations
self._compare_error(boxes_m3d, dds_m3d, boxes_3dop, dds_3dop, boxes_md, dds_md, boxes_our, dds_our,
boxes_gt, dds_gt, truncs_gt, occs_gt, dds_geom)
# Save statistics
for key in self.errors:
for clst in self.clusters[:-2]: # M3d and pifpaf does not have annotations above 40 meters
self.dic_stats['test'][key]['mean'][clst] = \
sum(self.errors[key][clst]) / float(len(self.errors[key][clst]))
self.dic_stats['test'][key]['max'][clst] = max(self.errors[key][clst])
self.dic_stats['test'][key]['cnt'][clst] = len(self.errors[key][clst])
if key == 'our':
for clst in self.clusters[:-2]:
self.dic_stats['test'][key]['std_ale'][clst] = \
sum(self.dic_stds['ale'][clst]) / float(len(self.dic_stds['ale'][clst]))
self.dic_stats['test'][key]['std_epi'][clst] = \
sum(self.dic_stds['epi'][clst]) / float(len(self.dic_stds['epi'][clst]))
self.dic_stats['test'][key]['interval'][clst] = \
sum(self.dic_stds['interval'][clst]) / float(len(self.dic_stds['interval'][clst]))
self.dic_stats['test'][key]['at_risk'][clst] = \
sum(self.dic_stds['at_risk'][clst]) / float(len(self.dic_stds['at_risk'][clst]))
# Print statistics
print(" Number of GT annotations: {} ".format(cnt_gt))
for key in self.errors:
if key in ['our', 'm3d', '3dop']:
print(" Number of {} annotations with confidence >= {} : {} "
.format(key, self.dic_thresh_conf[key], self.dic_cnt[key]))
# Include also missed annotations in the statistics
matched = len(self.errors[key]['all'])
missed = cnt_gt - matched
zeros = [0] * missed
self.errors[key]['<0.5m'].extend(zeros)
self.errors[key]['<1m'].extend(zeros)
self.errors[key]['<2m'].extend(zeros)
for clst in self.clusters[:-9]:
print(" {} Average error in cluster {}: {:.2f} with a max error of {:.1f}, "
"for {} annotations"
.format(key, clst, self.dic_stats['test'][key]['mean'][clst], self.dic_stats['test'][key]['max'][clst],
self.dic_stats['test'][key]['cnt'][clst]))
if key == 'our':
print("% of annotation inside the confidence interval: {:.1f} %, "
"of which {:.1f} % at higher risk"
.format(100 * self.dic_stats['test'][key]['interval'][clst],
100 * self.dic_stats['test'][key]['at_risk'][clst]))
for perc in ['<0.5m', '<1m', '<2m']:
print("{} Instances with error {}: {:.2f} %"
.format(key, perc, 100 * sum(self.errors[key][perc])/len(self.errors[key][perc])))
print("\n Number of matched annotations: {:.1f} %".format(100 * matched/cnt_gt))
print("-"*100)
# Print images
print_results(self.dic_stats, self.show)
def _parse_txts(self, path, method):
boxes = []
dds = []
stds_ale = []
stds_epi = []
confs = []
dds_geom = []
xyzs = []
xy_kps = []
# Iterate over each line of the txt file
if method == '3dop' or method == 'm3d':
try:
with open(path, "r") as ff:
for line in ff:
if check_conditions(line, thresh=self.dic_thresh_conf[method], mode=method):
boxes.append([float(x) for x in line.split()[4:8]])
loc = ([float(x) for x in line.split()[11:14]])
dds.append(math.sqrt(loc[0] ** 2 + loc[1] ** 2 + loc[2] ** 2))
self.dic_cnt[method] += 1
return boxes, dds
except FileNotFoundError:
return [], []
elif method == 'md':
try:
with open(path, "r") as ff:
for line in ff:
box = [float(x[:-1]) for x in line.split()[0:4]]
delta_h = (box[3] - box[1]) / 10
delta_w = (box[2] - box[0]) / 10
assert delta_h > 0 and delta_w > 0, "Bounding box <=0"
box[0] -= delta_w
box[1] -= delta_h
box[2] += delta_w
box[3] += delta_h
boxes.append(box)
dds.append(float(line.split()[5][:-1]))
self.dic_cnt[method] += 1
return boxes, dds
except FileNotFoundError:
return [], []
elif method == 'psm':
try:
with open(path, "r") as ff:
for line in ff:
box = [float(x[:-1]) for x in line[1:-1].split(',')[0:4]]
delta_h = (box[3] - box[1]) / 10
delta_w = (box[2] - box[0]) / 10
assert delta_h > 0 and delta_w > 0, "Bounding box <=0"
box[0] -= delta_w
box[1] -= delta_h
box[2] += delta_w
box[3] += delta_h
boxes.append(box)
dds.append(float(line.split()[5][:-1]))
self.dic_cnt[method] += 1
return boxes, dds
except FileNotFoundError:
return [], []
elif method == 'our':
try:
with open(path, "r") as ff:
file_lines = ff.readlines()
for line_our in file_lines[:-1]:
line_list = [float(x) for x in line_our.split()]
if check_conditions(line_list, thresh=self.dic_thresh_conf[method], mode=method):
boxes.append(line_list[:4])
xyzs.append(line_list[4:7])
dds.append(line_list[7])
stds_ale.append(line_list[8])
stds_epi.append(line_list[9])
dds_geom.append(line_list[11])
xy_kps.append(line_list[12:])
self.dic_cnt[method] += 1
kk_list = [float(x) for x in file_lines[-1].split()]
return boxes, dds, stds_ale, stds_epi, kk_list, dds_geom, xyzs, xy_kps
except FileNotFoundError:
return [], [], [], [], [], [], [], []
def _estimate_error_base(self, boxes, dds, boxes_gt, dds_gt, truncs_gt, occs_gt, method):
# Compute error (distance) and save it
boxes_gt = copy.deepcopy(boxes_gt)
dds_gt = copy.deepcopy(dds_gt)
truncs_gt = copy.deepcopy(truncs_gt)
occs_gt = copy.deepcopy(occs_gt)
for idx, box in enumerate(boxes):
if len(boxes_gt) >= 1:
dd = dds[idx]
idx_max, iou_max = get_idx_max(box, boxes_gt)
cat = get_category(boxes_gt[idx_max], truncs_gt[idx_max], occs_gt[idx_max])
# Update error if match is found
if iou_max > self.dic_thresh_iou[method]:
dd_gt = dds_gt[idx_max]
self.update_errors(dd, dd_gt, cat, self.errors[method])
boxes_gt.pop(idx_max)
dds_gt.pop(idx_max)
truncs_gt.pop(idx_max)
occs_gt.pop(idx_max)
else:
break
def _estimate_error_mloco(self, boxes, dds, stds_ale, stds_epi, kk_list, dds_geom, xyzs, xy_kps,
boxes_gt, dds_gt, truncs_gt, occs_gt, name):
# Compute error (distance) and save it
boxes_gt = copy.deepcopy(boxes_gt)
dds_gt = copy.deepcopy(dds_gt)
truncs_gt = copy.deepcopy(truncs_gt)
occs_gt = copy.deepcopy(occs_gt)
for idx, box in enumerate(boxes):
if len(boxes_gt) >= 1:
dd = dds[idx]
dd_geom = dds_geom[idx]
ale = stds_ale[idx]
epi = stds_epi[idx]
xyz = xyzs[idx]
xy_kp = xy_kps[idx]
idx_max, iou_max = get_idx_max(box, boxes_gt)
cat = get_category(boxes_gt[idx_max], truncs_gt[idx_max], occs_gt[idx_max])
# Update error if match is found
if iou_max > self.dic_thresh_iou['our']:
dd_gt = dds_gt[idx_max]
self.update_errors(dd, dd_gt, cat, self.errors['our'])
self.update_errors(dd_geom, dd_gt, cat, self.errors['geom'])
self.update_uncertainty(ale, epi, dd, dd_gt, cat)
boxes_gt.pop(idx_max)
dds_gt.pop(idx_max)
truncs_gt.pop(idx_max)
occs_gt.pop(idx_max)
def _compare_error(self, boxes_m3d, dds_m3d, boxes_3dop, dds_3dop, boxes_md, dds_md, boxes_our, dds_our,
boxes_gt, dds_gt, truncs_gt, occs_gt, dds_geom):
boxes_gt = copy.deepcopy(boxes_gt)
dds_gt = copy.deepcopy(dds_gt)
truncs_gt = copy.deepcopy(truncs_gt)
occs_gt = copy.deepcopy(occs_gt)
for idx, box in enumerate(boxes_our):
if len(boxes_gt) >= 1:
dd_our = dds_our[idx]
dd_geom = dds_geom[idx]
idx_max, iou_max = get_idx_max(box, boxes_gt)
cat = get_category(boxes_gt[idx_max], truncs_gt[idx_max], occs_gt[idx_max])
idx_max_3dop, iou_max_3dop = get_idx_max(box, boxes_3dop)
idx_max_m3d, iou_max_m3d = get_idx_max(box, boxes_m3d)
idx_max_md, iou_max_md = get_idx_max(box, boxes_md)
iou_min = min(iou_max_3dop, iou_max_m3d, iou_max_md)
if iou_max >= self.dic_thresh_iou['our'] and iou_min >= self.dic_thresh_iou['m3d']:
dd_gt = dds_gt[idx_max]
dd_3dop = dds_3dop[idx_max_3dop]
dd_m3d = dds_m3d[idx_max_m3d]
dd_md = dds_md[idx_max_md]
self.update_errors(dd_3dop, dd_gt, cat, self.errors['3dop_merged'])
self.update_errors(dd_our, dd_gt, cat, self.errors['our_merged'])
self.update_errors(dd_m3d, dd_gt, cat, self.errors['m3d_merged'])
self.update_errors(dd_geom, dd_gt, cat, self.errors['geom_merged'])
self.update_errors(dd_md, dd_gt, cat, self.errors['md_merged'])
self.dic_cnt['merged'] += 1
boxes_gt.pop(idx_max)
dds_gt.pop(idx_max)
truncs_gt.pop(idx_max)
occs_gt.pop(idx_max)
else:
break
def update_errors(self, dd, dd_gt, cat, errors):
"""Compute and save errors between a single box and the gt box which match"""
diff = abs(dd - dd_gt)
clst = find_cluster(dd_gt, self.clusters)
errors['all'].append(diff)
errors[cat].append(diff)
errors[clst].append(diff)
# Check if the distance is less than one or 2 meters
if diff <= 0.5:
errors['<0.5m'].append(1)
else:
errors['<0.5m'].append(0)
if diff <= 1:
errors['<1m'].append(1)
else:
errors['<1m'].append(0)
if diff <= 2:
errors['<2m'].append(1)
else:
errors['<2m'].append(0)
def update_uncertainty(self, std_ale, std_epi, dd, dd_gt, cat):
clst = find_cluster(dd_gt, self.clusters)
self.dic_stds['ale']['all'].append(std_ale)
self.dic_stds['ale'][clst].append(std_ale)
self.dic_stds['ale'][cat].append(std_ale)
self.dic_stds['epi']['all'].append(std_epi)
self.dic_stds['epi'][clst].append(std_epi)
self.dic_stds['epi'][cat].append(std_epi)
# Number of annotations inside the confidence interval
if dd_gt <= dd: # Particularly dangerous instances
self.dic_stds['at_risk']['all'].append(1)
self.dic_stds['at_risk'][clst].append(1)
self.dic_stds['at_risk'][cat].append(1)
if abs(dd - dd_gt) <= std_epi:
self.dic_stds['interval']['all'].append(1)
self.dic_stds['interval'][clst].append(1)
self.dic_stds['interval'][cat].append(1)
else:
self.dic_stds['interval']['all'].append(0)
self.dic_stds['interval'][clst].append(0)
self.dic_stds['interval'][cat].append(0)
else:
self.dic_stds['at_risk']['all'].append(0)
self.dic_stds['at_risk'][clst].append(0)
self.dic_stds['at_risk'][cat].append(0)
# self.dic_stds['at_risk']['all'].append(0)
# self.dic_stds['at_risk'][clst].append(0)
# self.dic_stds['at_risk'][cat].append(0)
def find_cluster(dd, clusters):
"""Find the correct cluster. The first and the last one are not numeric"""
for clst in clusters[4: -1]:
if dd <= int(clst):
return clst
return clusters[-1]