monoloco/monoloco/eval/geom_baseline.py
Lorenzo Bertoni 934622bc81
Lint (#50)
- Add continuous integration
- Add Versioneer
- Refactor of preprocessing
- Add tables of evaluation
2021-04-22 15:43:51 +02:00

211 lines
7.6 KiB
Python

import json
import math
from collections import defaultdict
import numpy as np
from monoloco.utils import pixel_to_camera, get_keypoints
AVERAGE_Y = 0.48
CLUSTERS = ['10', '20', '30', 'all']
def geometric_coordinates(keypoints, kk, average_y=0.48):
""" Evaluate geometric depths for a set of keypoints"""
zzs_geom = []
uv_shoulders = get_keypoints(keypoints, mode='shoulder')
uv_hips = get_keypoints(keypoints, mode='hip')
uv_centers = get_keypoints(keypoints, mode='center')
xy_shoulders = pixel_to_camera(uv_shoulders, kk, 1)
xy_hips = pixel_to_camera(uv_hips, kk, 1)
xy_centers = pixel_to_camera(uv_centers, kk, 1)
for idx, xy_shoulder in enumerate(xy_shoulders):
zz = compute_depth(xy_shoulder, xy_hips[idx], average_y)
zzs_geom.append(zz)
return zzs_geom, xy_centers
def geometric_baseline(joints):
"""
List of json files --> 2 lists with mean and std for each segment and the total count of instances
For each annotation:
1. From gt boxes calculate the height (deltaY) for the segments head, shoulder, hip, ankle
2. From mask boxes calculate distance of people using average height of people and real pixel height
For left-right ambiguities we chose always the average of the joints
The joints are mapped from 0 to 16 in the following order:
['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow',
'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle',
'right_ankle']
"""
cnt_tot = 0
dic_dist = defaultdict(lambda: defaultdict(list))
# Access the joints file
with open(joints, 'r') as ff:
dic_joints = json.load(ff)
# Calculate distances for all the instances in the joints dictionary
for phase in ['train', 'val']:
cnt = update_distances(dic_joints[phase], dic_dist, phase, AVERAGE_Y)
cnt_tot += cnt
# Calculate mean and std of each segment
dic_h_means = calculate_heights(dic_dist['heights'], mode='mean')
dic_h_stds = calculate_heights(dic_dist['heights'], mode='std')
errors = calculate_error(dic_dist['error'])
# Show results
print("Computed distance of {} annotations".format(cnt_tot))
for key in dic_h_means:
print("Average height of segment {} is {:.2f} with a std of {:.2f}".
format(key, dic_h_means[key], dic_h_stds[key]))
for clst in CLUSTERS:
print("Average error over the val set for clst {}: {:.2f}".format(clst, errors[clst]))
print("Joints used: {}".format(joints))
def update_distances(dic_fin, dic_dist, phase, average_y):
# Loop over each annotation in the json file corresponding to the image
cnt = 0
for idx, kps in enumerate(dic_fin['kps']):
# Extract pixel coordinates of head, shoulder, hip, ankle and and save them
dic_uv = {mode: get_keypoints(kps, mode) for mode in ['head', 'shoulder', 'hip', 'ankle']}
# Convert segments from pixel coordinate to camera coordinate
kk = dic_fin['K'][idx]
z_met = dic_fin['boxes_3d'][idx][2]
# Create a dict with all annotations in meters
dic_xyz = {key: pixel_to_camera(dic_uv[key], kk, z_met) for key in dic_uv}
dic_xyz_norm = {key: pixel_to_camera(dic_uv[key], kk, 1) for key in dic_uv}
# Compute real height
dy_met = abs(float((dic_xyz['hip'][0][1] - dic_xyz['shoulder'][0][1])))
# Estimate distance for a single annotation
z_met_real = compute_depth(dic_xyz_norm['shoulder'][0], dic_xyz_norm['hip'][0], average_y,
mode='real', dy_met=dy_met)
z_met_approx = compute_depth(dic_xyz_norm['shoulder'][0], dic_xyz_norm['hip'][0], average_y, mode='average')
# Compute distance with respect to the center of the 3D bounding box
d_real = math.sqrt(z_met_real ** 2 + dic_fin['boxes_3d'][idx][0] ** 2 + dic_fin['boxes_3d'][idx][1] ** 2)
d_approx = math.sqrt(z_met_approx ** 2 +
dic_fin['boxes_3d'][idx][0] ** 2 + dic_fin['boxes_3d'][idx][1] ** 2)
# Update the dictionary with distance and heights metrics
dic_dist = update_dic_dist(dic_dist, dic_xyz, d_real, d_approx, phase)
cnt += 1
return cnt
def compute_depth(xyz_norm_1, xyz_norm_2, average_y, mode='average', dy_met=0):
"""
Compute depth Z of a mask annotation (solving a linear system) for 2 possible cases:
1. knowing specific height of the annotation (head-ankle) dy_met
2. using mean height of people (average_y)
"""
assert mode in ('average', 'real')
x1 = float(xyz_norm_1[0])
y1 = float(xyz_norm_1[1])
x2 = float(xyz_norm_2[0])
y2 = float(xyz_norm_2[1])
xx = (x1 + x2) / 2
# Choose if solving for provided height or average one.
if mode == 'average':
cc = - average_y # Y axis goes down
else:
cc = -dy_met
# Solving the linear system Ax = b
matrix = np.array([[y1, 0, -xx],
[0, -y1, 1],
[y2, 0, -xx],
[0, -y2, 1]])
bb = np.array([cc * xx, -cc, 0, 0]).reshape(4, 1)
xx = np.linalg.lstsq(matrix, bb, rcond=None)
z_met = abs(np.float(xx[0][1])) # Abs take into account specularity behind the observer
return z_met
def update_dic_dist(dic_dist, dic_xyz, d_real, d_approx, phase):
""" For every annotation in a single image, update the final dictionary"""
# Update the dict with heights metric
if phase == 'train':
dic_dist['heights']['head'].append(float(dic_xyz['head'][0][1]))
dic_dist['heights']['shoulder'].append(float(dic_xyz['shoulder'][0][1]))
dic_dist['heights']['hip'].append(float(dic_xyz['hip'][0][1]))
dic_dist['heights']['ankle'].append(float(dic_xyz['ankle'][0][1]))
# Update the dict with distance metrics for the test phase
if phase == 'val':
error = abs(d_real - d_approx)
if d_real <= 10:
dic_dist['error']['10'].append(error)
elif d_real <= 20:
dic_dist['error']['20'].append(error)
elif d_real <= 30:
dic_dist['error']['30'].append(error)
else:
dic_dist['error']['>30'].append(error)
dic_dist['error']['all'].append(error)
return dic_dist
def calculate_heights(heights, mode):
"""
Compute statistics of heights based on the distance
"""
assert mode in ('mean', 'std', 'max')
heights_fin = {}
head_shoulder = np.array(heights['shoulder']) - np.array(heights['head'])
shoulder_hip = np.array(heights['hip']) - np.array(heights['shoulder'])
hip_ankle = np.array(heights['ankle']) - np.array(heights['hip'])
if mode == 'mean':
heights_fin['head_shoulder'] = np.float(np.mean(head_shoulder)) * 100
heights_fin['shoulder_hip'] = np.float(np.mean(shoulder_hip)) * 100
heights_fin['hip_ankle'] = np.float(np.mean(hip_ankle)) * 100
elif mode == 'std':
heights_fin['head_shoulder'] = np.float(np.std(head_shoulder)) * 100
heights_fin['shoulder_hip'] = np.float(np.std(shoulder_hip)) * 100
heights_fin['hip_ankle'] = np.float(np.std(hip_ankle)) * 100
elif mode == 'max':
heights_fin['head_shoulder'] = np.float(np.max(head_shoulder)) * 100
heights_fin['shoulder_hip'] = np.float(np.max(shoulder_hip)) * 100
heights_fin['hip_ankle'] = np.float(np.max(hip_ankle)) * 100
return heights_fin
def calculate_error(dic_errors):
"""
Compute statistics of distances based on the distance
"""
errors = {}
for clst in dic_errors:
errors[clst] = np.float(np.mean(np.array(dic_errors[clst])))
return errors