445 lines
19 KiB
Python
445 lines
19 KiB
Python
|
|
import os
|
|
import math
|
|
import logging
|
|
from collections import defaultdict
|
|
import json
|
|
import copy
|
|
import datetime
|
|
|
|
from utils.misc import get_idx_max
|
|
from utils.kitti import check_conditions, get_category, split_training
|
|
from visuals.results import print_results
|
|
|
|
|
|
class KittiEval:
|
|
"""
|
|
Evaluate Monoloco code on KITTI dataset and compare it with:
|
|
- Mono3D
|
|
- 3DOP
|
|
- MonoDepth
|
|
"""
|
|
|
|
def __init__(self, show=False, thresh_iou_our=0.3, thresh_iou_m3d=0.5, thresh_conf_m3d=0.5, thresh_conf_our=0.3):
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
self.logger = logging.getLogger(__name__)
|
|
|
|
self.show = show
|
|
self.dir_gt = os.path.join('data', 'kitti', 'gt')
|
|
self.dir_m3d = os.path.join('data', 'kitti', 'm3d')
|
|
self.dir_3dop = os.path.join('data', 'kitti', '3dop')
|
|
self.dir_md = os.path.join('data', 'kitti', 'monodepth')
|
|
self.dir_our = os.path.join('data', 'kitti', 'monoloco')
|
|
path_train = os.path.join('splits', 'kitti_train.txt')
|
|
path_val = os.path.join('splits', 'kitti_val.txt')
|
|
dir_logs = os.path.join('data', 'logs')
|
|
assert dir_logs, "No directory to save final statistics"
|
|
|
|
now = datetime.datetime.now()
|
|
now_time = now.strftime("%Y%m%d-%H%M")[2:]
|
|
self.path_results = os.path.join(dir_logs, 'eval-' + now_time + '.json')
|
|
|
|
assert os.path.exists(self.dir_m3d) and os.path.exists(self.dir_our) \
|
|
and os.path.exists(self.dir_3dop)
|
|
|
|
self.clusters = ['easy', 'moderate', 'hard', 'all', '6', '10', '15', '20', '25', '30', '40', '50', '>50']
|
|
|
|
self.dic_thresh_iou = {'m3d': thresh_iou_m3d, '3dop': thresh_iou_m3d, 'md': thresh_iou_our, 'our': thresh_iou_our}
|
|
self.dic_thresh_conf = {'m3d': thresh_conf_m3d, '3dop': thresh_conf_m3d, 'our': thresh_conf_our}
|
|
|
|
self.dic_cnt = defaultdict(int)
|
|
self.errors = defaultdict(lambda: defaultdict(list))
|
|
|
|
# Extract validation images for evaluation
|
|
names_gt = tuple(os.listdir(self.dir_gt))
|
|
_, self.set_val = split_training(names_gt, path_train, path_val)
|
|
aa = 5
|
|
|
|
def run(self):
|
|
|
|
"""Evaluate Monoloco methods on ALP and ALE metrics"""
|
|
|
|
self.dic_stds = defaultdict(lambda: defaultdict(list))
|
|
dic_stats = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float))))
|
|
|
|
cnt_gt = 0
|
|
|
|
# Iterate over each ground truth file in the training set
|
|
for name in self.set_val:
|
|
path_gt = os.path.join(self.dir_gt, name)
|
|
path_m3d = os.path.join(self.dir_m3d, name)
|
|
path_our = os.path.join(self.dir_our, name)
|
|
path_3dop = os.path.join(self.dir_3dop, name)
|
|
path_md = os.path.join(self.dir_md, name)
|
|
boxes_gt = []
|
|
truncs_gt = [] # Float from 0 to 1
|
|
occs_gt = [] # Either 0,1,2,3 fully visible, partly occluded, largely occluded, unknown
|
|
dds_gt = []
|
|
dic_fin = defaultdict(list)
|
|
|
|
# Iterate over each line of the gt file and save box location and distances
|
|
with open(path_gt, "r") as f_gt:
|
|
for line_gt in f_gt:
|
|
if self.check_conditions(line_gt, mode='gt'):
|
|
truncs_gt.append(float(line_gt.split()[1]))
|
|
occs_gt.append(int(line_gt.split()[2]))
|
|
boxes_gt.append([float(x) for x in line_gt.split()[4:8]])
|
|
loc_gt = [float(x) for x in line_gt.split()[11:14]]
|
|
dds_gt.append(math.sqrt(loc_gt[0] ** 2 + loc_gt[1] ** 2 + loc_gt[2] ** 2))
|
|
cnt_gt += 1
|
|
|
|
# Extract annotations for the same file
|
|
if len(boxes_gt) > 0:
|
|
boxes_m3d, dds_m3d = self.parse_txts(path_m3d, method='m3d')
|
|
boxes_3dop, dds_3dop = self.parse_txts(path_3dop, method='3dop')
|
|
boxes_md, dds_md = self.parse_txts(path_md, method='md')
|
|
boxes_our, dds_our, stds_ale, stds_epi, kk_list, dds_geom, xyzs, xy_kps = \
|
|
self.parse_txts(path_our, method='our')
|
|
|
|
# Compute the error with ground truth
|
|
|
|
self.estimate_error_base(boxes_m3d, dds_m3d, boxes_gt, dds_gt, truncs_gt, occs_gt, method='m3d')
|
|
self.estimate_error_base(boxes_3dop, dds_3dop, boxes_gt, dds_gt, truncs_gt, occs_gt, method='3dop')
|
|
self.estimate_error_base(boxes_md, dds_md, boxes_gt, dds_gt, truncs_gt, occs_gt, method='md')
|
|
self.estimate_error_our(boxes_our, dds_our, stds_ale, stds_epi, kk_list, dds_geom, xyzs, xy_kps,
|
|
boxes_gt, dds_gt, truncs_gt, occs_gt, dic_fin, name)
|
|
|
|
# Iterate over all the files together to find a pool of common annotations
|
|
self.compare_error(boxes_m3d, dds_m3d, boxes_3dop, dds_3dop, boxes_md, dds_md, boxes_our, dds_our,
|
|
boxes_gt, dds_gt, truncs_gt, occs_gt, dds_geom)
|
|
|
|
# Save statistics
|
|
for key in self.errors:
|
|
for clst in self.clusters[:-2]: # M3d and pifpaf does not have annotations above 40 meters
|
|
dic_stats['test'][key]['mean'][clst] = sum(self.errors[key][clst]) / float(len(self.errors[key][clst]))
|
|
dic_stats['test'][key]['max'][clst] = max(self.errors[key][clst])
|
|
dic_stats['test'][key]['cnt'][clst] = len(self.errors[key][clst])
|
|
|
|
if key == 'our':
|
|
for clst in self.clusters[:-2]:
|
|
dic_stats['test'][key]['std_ale'][clst] = \
|
|
sum(self.dic_stds['ale'][clst]) / float(len(self.dic_stds['ale'][clst]))
|
|
dic_stats['test'][key]['std_epi'][clst] = \
|
|
sum(self.dic_stds['epi'][clst]) / float(len(self.dic_stds['epi'][clst]))
|
|
dic_stats['test'][key]['interval'][clst] = \
|
|
sum(self.dic_stds['interval'][clst]) / float(len(self.dic_stds['interval'][clst]))
|
|
dic_stats['test'][key]['at_risk'][clst] = \
|
|
sum(self.dic_stds['at_risk'][clst]) / float(len(self.dic_stds['at_risk'][clst]))
|
|
|
|
# Print statistics
|
|
print(" Number of GT annotations: {} ".format(cnt_gt))
|
|
for key in self.errors:
|
|
if key in ['our', 'm3d', '3dop']:
|
|
print(" Number of {} annotations with confidence >= {} : {} "
|
|
.format(key, self.dic_thresh_conf[key], self.dic_cnt[key]))
|
|
|
|
# Include also missed annotations in the statistics
|
|
matched = len(self.errors[key]['all'])
|
|
missed = cnt_gt - matched
|
|
zeros = [0] * missed
|
|
self.errors[key]['<0.5m'].extend(zeros)
|
|
self.errors[key]['<1m'].extend(zeros)
|
|
self.errors[key]['<2m'].extend(zeros)
|
|
|
|
for clst in self.clusters[:-9]:
|
|
print(" {} Average error in cluster {}: {:.2f} with a max error of {:.1f}, "
|
|
"for {} annotations"
|
|
.format(key, clst, dic_stats['test'][key]['mean'][clst], dic_stats['test'][key]['max'][clst],
|
|
dic_stats['test'][key]['cnt'][clst]))
|
|
|
|
if key == 'our':
|
|
print("% of annotation inside the confidence interval: {:.1f} %, "
|
|
"of which {:.1f} % at higher risk"
|
|
.format(100 * dic_stats['test'][key]['interval'][clst],
|
|
100 * dic_stats['test'][key]['at_risk'][clst]))
|
|
|
|
for perc in ['<0.5m', '<1m', '<2m']:
|
|
print("{} Instances with error {}: {:.2f} %"
|
|
.format(key, perc, 100 * sum(self.errors[key][perc])/len(self.errors[key][perc])))
|
|
|
|
print("\n Number of matched annotations: {:.1f} %".format(100 * matched/cnt_gt))
|
|
print("-"*100)
|
|
|
|
# Print images
|
|
self.print_results(dic_stats, self.show)
|
|
|
|
def parse_txts(self, path, method):
|
|
boxes = []
|
|
dds = []
|
|
stds_ale = []
|
|
stds_epi = []
|
|
confs = []
|
|
dds_geom = []
|
|
xyzs = []
|
|
xy_kps = []
|
|
|
|
# Iterate over each line of the txt file
|
|
if method == '3dop' or method == 'm3d':
|
|
try:
|
|
with open(path, "r") as ff:
|
|
for line in ff:
|
|
if self.check_conditions(line, thresh=self.dic_thresh_conf[method], mode=method):
|
|
boxes.append([float(x) for x in line.split()[4:8]])
|
|
loc = ([float(x) for x in line.split()[11:14]])
|
|
dds.append(math.sqrt(loc[0] ** 2 + loc[1] ** 2 + loc[2] ** 2))
|
|
self.dic_cnt[method] += 1
|
|
return boxes, dds
|
|
|
|
except FileNotFoundError:
|
|
return [], []
|
|
|
|
elif method == 'md':
|
|
try:
|
|
with open(path, "r") as ff:
|
|
for line in ff:
|
|
box = [float(x[:-1]) for x in line.split()[0:4]]
|
|
delta_h = (box[3] - box[1]) / 10
|
|
delta_w = (box[2] - box[0]) / 10
|
|
assert delta_h > 0 and delta_w > 0, "Bounding box <=0"
|
|
box[0] -= delta_w
|
|
box[1] -= delta_h
|
|
box[2] += delta_w
|
|
box[3] += delta_h
|
|
boxes.append(box)
|
|
dds.append(float(line.split()[5][:-1]))
|
|
self.dic_cnt[method] += 1
|
|
return boxes, dds
|
|
|
|
except FileNotFoundError:
|
|
return [], []
|
|
|
|
elif method == 'psm':
|
|
try:
|
|
with open(path, "r") as ff:
|
|
for line in ff:
|
|
box = [float(x[:-1]) for x in line[1:-1].split(',')[0:4]]
|
|
delta_h = (box[3] - box[1]) / 10
|
|
delta_w = (box[2] - box[0]) / 10
|
|
assert delta_h > 0 and delta_w > 0, "Bounding box <=0"
|
|
box[0] -= delta_w
|
|
box[1] -= delta_h
|
|
box[2] += delta_w
|
|
box[3] += delta_h
|
|
boxes.append(box)
|
|
dds.append(float(line.split()[5][:-1]))
|
|
self.dic_cnt[method] += 1
|
|
return boxes, dds
|
|
|
|
except FileNotFoundError:
|
|
return [], []
|
|
|
|
elif method == 'our':
|
|
try:
|
|
with open(path, "r") as ff:
|
|
file_lines = ff.readlines()
|
|
for line_our in file_lines[:-1]:
|
|
line_list = [float(x) for x in line_our.split()]
|
|
if self.check_conditions(line_list, thresh=self.dic_thresh_conf[method], mode=method):
|
|
boxes.append(line_list[:4])
|
|
xyzs.append(line_list[4:7])
|
|
dds.append(line_list[7])
|
|
stds_ale.append(line_list[8])
|
|
stds_epi.append(line_list[9])
|
|
dds_geom.append(line_list[11])
|
|
xy_kps.append(line_list[12:])
|
|
|
|
self.dic_cnt[method] += 1
|
|
|
|
kk_list = [float(x) for x in file_lines[-1].split()]
|
|
|
|
return boxes, dds, stds_ale, stds_epi, kk_list, dds_geom, xyzs, xy_kps
|
|
|
|
except FileNotFoundError:
|
|
return [], [], [], [], [], [], [], []
|
|
|
|
def estimate_error_base(self, boxes, dds, boxes_gt, dds_gt, truncs_gt, occs_gt, method):
|
|
|
|
# Compute error (distance) and save it
|
|
boxes_gt = copy.deepcopy(boxes_gt)
|
|
dds_gt = copy.deepcopy(dds_gt)
|
|
truncs_gt = copy.deepcopy(truncs_gt)
|
|
occs_gt = copy.deepcopy(occs_gt)
|
|
|
|
for idx, box in enumerate(boxes):
|
|
if len(boxes_gt) >= 1:
|
|
dd = dds[idx]
|
|
idx_max, iou_max = self.get_idx_max(box, boxes_gt)
|
|
cat = self.get_category(boxes_gt[idx_max], truncs_gt[idx_max], occs_gt[idx_max])
|
|
# Update error if match is found
|
|
if iou_max > self.dic_thresh_iou[method]:
|
|
dd_gt = dds_gt[idx_max]
|
|
self.update_errors(dd, dd_gt, cat, self.errors[method])
|
|
|
|
boxes_gt.pop(idx_max)
|
|
dds_gt.pop(idx_max)
|
|
truncs_gt.pop(idx_max)
|
|
occs_gt.pop(idx_max)
|
|
else:
|
|
break
|
|
|
|
def estimate_error_our(self, boxes, dds, stds_ale, stds_epi, kk_list, dds_geom, xyzs, xy_kps,
|
|
boxes_gt, dds_gt, truncs_gt, occs_gt, dic_fin, name):
|
|
|
|
# Compute error (distance) and save it
|
|
boxes_gt = copy.deepcopy(boxes_gt)
|
|
dds_gt = copy.deepcopy(dds_gt)
|
|
truncs_gt = copy.deepcopy(truncs_gt)
|
|
occs_gt = copy.deepcopy(occs_gt)
|
|
|
|
for idx, box in enumerate(boxes):
|
|
if len(boxes_gt) >= 1:
|
|
dd = dds[idx]
|
|
dd_geom = dds_geom[idx]
|
|
ale = stds_ale[idx]
|
|
epi = stds_epi[idx]
|
|
xyz = xyzs[idx]
|
|
xy_kp = xy_kps[idx]
|
|
idx_max, iou_max = self.get_idx_max(box, boxes_gt)
|
|
cat = self.get_category(boxes_gt[idx_max], truncs_gt[idx_max], occs_gt[idx_max])
|
|
|
|
# Update error if match is found
|
|
if iou_max > self.dic_thresh_iou['our']:
|
|
dd_gt = dds_gt[idx_max]
|
|
self.update_errors(dd, dd_gt, cat, self.errors['our'])
|
|
self.update_errors(dd_geom, dd_gt, cat, self.errors['geom'])
|
|
self.update_uncertainty(ale, epi, dd, dd_gt, cat)
|
|
|
|
boxes_gt.pop(idx_max)
|
|
dds_gt.pop(idx_max)
|
|
truncs_gt.pop(idx_max)
|
|
occs_gt.pop(idx_max)
|
|
|
|
# Extract K and save it everything in a json file
|
|
dic_fin['boxes'].append(box)
|
|
dic_fin['dds_gt'].append(dd_gt)
|
|
dic_fin['dds_pred'].append(dd)
|
|
dic_fin['stds_ale'].append(ale)
|
|
dic_fin['stds_epi'].append(epi)
|
|
dic_fin['dds_geom'].append(dd_geom)
|
|
dic_fin['xyz'].append(xyz)
|
|
dic_fin['xy_kps'].append(xy_kp)
|
|
else:
|
|
break
|
|
|
|
# kk_fin = np.array(kk_list).reshape(3, 3).tolist()
|
|
# dic_fin['K'] = kk_fin
|
|
# path_json = os.path.join(self.dir_fin, name[:-4] + '.json')
|
|
# with open(path_json, 'w') as ff:
|
|
# json.dump(dic_fin, ff)
|
|
|
|
def compare_error(self, boxes_m3d, dds_m3d, boxes_3dop, dds_3dop, boxes_md, dds_md, boxes_our, dds_our,
|
|
boxes_gt, dds_gt, truncs_gt, occs_gt, dds_geom):
|
|
|
|
boxes_gt = copy.deepcopy(boxes_gt)
|
|
dds_gt = copy.deepcopy(dds_gt)
|
|
truncs_gt = copy.deepcopy(truncs_gt)
|
|
occs_gt = copy.deepcopy(occs_gt)
|
|
|
|
for idx, box in enumerate(boxes_our):
|
|
if len(boxes_gt) >= 1:
|
|
dd_our = dds_our[idx]
|
|
dd_geom = dds_geom[idx]
|
|
idx_max, iou_max = self.get_idx_max(box, boxes_gt)
|
|
cat = self.get_category(boxes_gt[idx_max], truncs_gt[idx_max], occs_gt[idx_max])
|
|
|
|
idx_max_3dop, iou_max_3dop = self.get_idx_max(box, boxes_3dop)
|
|
idx_max_m3d, iou_max_m3d = self.get_idx_max(box, boxes_m3d)
|
|
idx_max_md, iou_max_md = self.get_idx_max(box, boxes_md)
|
|
|
|
iou_min = min(iou_max_3dop, iou_max_m3d, iou_max_md)
|
|
|
|
if iou_max >= self.dic_thresh_iou['our'] and iou_min >= self.dic_thresh_iou['m3d']:
|
|
|
|
dd_gt = dds_gt[idx_max]
|
|
dd_3dop = dds_3dop[idx_max_3dop]
|
|
dd_m3d = dds_m3d[idx_max_m3d]
|
|
dd_md = dds_md[idx_max_md]
|
|
|
|
self.update_errors(dd_3dop, dd_gt, cat, self.errors['3dop_merged'])
|
|
self.update_errors(dd_our, dd_gt, cat, self.errors['our_merged'])
|
|
self.update_errors(dd_m3d, dd_gt, cat, self.errors['m3d_merged'])
|
|
self.update_errors(dd_geom, dd_gt, cat, self.errors['geom_merged'])
|
|
self.update_errors(dd_md, dd_gt, cat, self.errors['md_merged'])
|
|
self.dic_cnt['merged'] += 1
|
|
|
|
boxes_gt.pop(idx_max)
|
|
dds_gt.pop(idx_max)
|
|
truncs_gt.pop(idx_max)
|
|
occs_gt.pop(idx_max)
|
|
else:
|
|
break
|
|
|
|
def update_errors(self, dd, dd_gt, cat, errors):
|
|
|
|
"""Compute and save errors between a single box and the gt box which match"""
|
|
|
|
diff = abs(dd - dd_gt)
|
|
clst = self.find_cluster(dd_gt, self.clusters)
|
|
errors['all'].append(diff)
|
|
errors[cat].append(diff)
|
|
errors[clst].append(diff)
|
|
|
|
# Check if the distance is less than one or 2 meters
|
|
if diff <= 0.5:
|
|
errors['<0.5m'].append(1)
|
|
else:
|
|
errors['<0.5m'].append(0)
|
|
|
|
if diff <= 1:
|
|
errors['<1m'].append(1)
|
|
else:
|
|
errors['<1m'].append(0)
|
|
|
|
if diff <= 2:
|
|
errors['<2m'].append(1)
|
|
else:
|
|
errors['<2m'].append(0)
|
|
|
|
def update_uncertainty(self, std_ale, std_epi, dd, dd_gt, cat):
|
|
|
|
clst = self.find_cluster(dd_gt, self.clusters)
|
|
self.dic_stds['ale']['all'].append(std_ale)
|
|
self.dic_stds['ale'][clst].append(std_ale)
|
|
self.dic_stds['ale'][cat].append(std_ale)
|
|
self.dic_stds['epi']['all'].append(std_epi)
|
|
self.dic_stds['epi'][clst].append(std_epi)
|
|
self.dic_stds['epi'][cat].append(std_epi)
|
|
|
|
# Number of annotations inside the confidence interval
|
|
if dd_gt <= dd: # Particularly dangerous instances
|
|
self.dic_stds['at_risk']['all'].append(1)
|
|
self.dic_stds['at_risk'][clst].append(1)
|
|
self.dic_stds['at_risk'][cat].append(1)
|
|
|
|
if abs(dd - dd_gt) <= (std_epi):
|
|
self.dic_stds['interval']['all'].append(1)
|
|
self.dic_stds['interval'][clst].append(1)
|
|
self.dic_stds['interval'][cat].append(1)
|
|
|
|
else:
|
|
self.dic_stds['interval']['all'].append(0)
|
|
self.dic_stds['interval'][clst].append(0)
|
|
self.dic_stds['interval'][cat].append(0)
|
|
|
|
|
|
else:
|
|
self.dic_stds['at_risk']['all'].append(0)
|
|
self.dic_stds['at_risk'][clst].append(0)
|
|
self.dic_stds['at_risk'][cat].append(0)
|
|
|
|
|
|
# self.dic_stds['at_risk']['all'].append(0)
|
|
# self.dic_stds['at_risk'][clst].append(0)
|
|
# self.dic_stds['at_risk'][cat].append(0)
|
|
|
|
@staticmethod
|
|
def find_cluster(dd, clusters):
|
|
"""Find the correct cluster. The first and the last one are not numeric"""
|
|
|
|
for clst in clusters[4: -1]:
|
|
if dd <= int(clst):
|
|
return clst
|
|
|
|
return clusters[-1]
|