monoloco/src/utils/kitti.py
2019-05-21 10:30:21 +02:00

146 lines
3.8 KiB
Python

import numpy as np
import copy
from utils.camera import pixel_to_camera, get_keypoints
from eval.geom_baseline import compute_distance_single
def eval_geometric(uv_kps, uv_centers, uv_shoulders, kk, average_y=0.48):
"""
Evaluate geometric distance
"""
xy_centers = []
dds_geom = []
for idx, _ in enumerate(uv_centers):
uv_center = copy.deepcopy(uv_centers[idx])
uv_center.append(1)
uv_shoulder = copy.deepcopy(uv_shoulders[idx])
uv_shoulder.append(1)
uv_kp = uv_kps[idx]
xy_center = pixel_to_camera(uv_center, kk, 1)
xy_centers.append(xy_center.tolist())
uu_2, vv_2 = get_keypoints(uv_kp[0], uv_kp[1], mode='hip')
uv_hip = [uu_2, vv_2, 1]
zz, _ = compute_distance_single(uv_shoulder, uv_hip, kk, average_y)
xyz_center = np.array([xy_center[0], xy_center[1], zz])
dd_geom = float(np.linalg.norm(xyz_center))
dds_geom.append(dd_geom)
return dds_geom, xy_centers
def get_calibration(path_txt):
"""Read calibration parameters from txt file:
For the left color camera we use P2 which is K * [I|t]
P = [fu, 0, x0, fu*t1-x0*t3
0, fv, y0, fv*t2-y0*t3
0, 0, 1, t3]
check also http://ksimek.github.io/2013/08/13/intrinsic/
Simple case test:
xyz = np.array([2, 3, 30, 1]).reshape(4, 1)
xyz_2 = xyz[0:-1] + tt
uv_temp = np.dot(kk, xyz_2)
uv_1 = uv_temp / uv_temp[-1]
kk_1 = np.linalg.inv(kk)
xyz_temp2 = np.dot(kk_1, uv_1)
xyz_new_2 = xyz_temp2 * xyz_2[2]
xyz_fin_2 = xyz_new_2 - tt
"""
with open(path_txt, "r") as ff:
file = ff.readlines()
p2_str = file[2].split()[1:]
p2_list = [float(xx) for xx in p2_str]
p2 = np.array(p2_list).reshape(3, 4)
kk = p2[:, :-1]
f_x = kk[0, 0]
f_y = kk[1, 1]
x0 = kk[2, 0]
y0 = kk[2, 1]
aa = p2[0, 3]
bb = p2[1, 3]
t3 = p2[2, 3]
t1 = (aa - x0*t3) / f_x
t2 = (bb - y0*t3) / f_y
tt = np.array([t1, t2, t3]).reshape(3, 1)
return kk, tt
def get_simplified_calibration(path_txt):
with open(path_txt, "r") as ff:
file = ff.readlines()
for line in file:
if line[:4] == 'K_02':
kk_str = line[4:].split()[1:]
kk_list = [float(xx) for xx in kk_str]
kk = np.array(kk_list).reshape(3, 3).tolist()
return kk
raise ValueError('Matrix K_02 not found in the file')
def check_conditions(line, mode, thresh=0.5):
"""Check conditions of our or m3d txt file"""
check = False
assert mode == 'gt' or mode == 'm3d' or mode == '3dop' or mode == 'our', "Type not recognized"
if mode == 'm3d' or mode == '3dop':
conf = line.split()[15]
if line[:10] == 'pedestrian' and float(conf) >= thresh:
check = True
elif mode == 'gt':
if line[:10] == 'Pedestrian':
check = True
elif mode == 'our':
if line[10] >= thresh:
check = True
return check
def get_category(box, trunc, occ):
hh = box[3] - box[1]
if hh >= 40 and trunc <= 0.15 and occ <= 0:
cat = 'easy'
elif trunc <= 0.3 and occ <= 1:
cat = 'moderate'
else:
cat = 'hard'
return cat
def split_training(names_gt, path_train, path_val):
"""Split training and validation images"""
set_gt = set(names_gt)
set_train = set()
set_val = set()
with open(path_train, "r") as f_train:
for line in f_train:
set_train.add(line[:-1] + '.txt')
with open(path_val, "r") as f_val:
for line in f_val:
set_val.add(line[:-1] + '.txt')
set_train = set_gt.intersection(set_train)
set_val = set_gt.intersection(set_val)
assert set_train and set_val, "No validation or training annotations"
return set_train, set_val