monoloco/monoloco/network/architectures.py
Lorenzo Bertoni 934622bc81
Lint (#50)
- Add continuous integration
- Add Versioneer
- Refactor of preprocessing
- Add tables of evaluation
2021-04-22 15:43:51 +02:00

177 lines
4.8 KiB
Python

import torch
import torch.nn as nn
class LocoModel(nn.Module):
def __init__(self, input_size, output_size=2, linear_size=512, p_dropout=0.2, num_stage=3, device='cuda'):
super().__init__()
self.num_stage = num_stage
self.stereo_size = input_size
self.mono_size = int(input_size / 2)
self.output_size = output_size - 1
self.linear_size = linear_size
self.p_dropout = p_dropout
self.num_stage = num_stage
self.linear_stages = []
self.device = device
# Initialize weights
# Preprocessing
self.w1 = nn.Linear(self.stereo_size, self.linear_size)
self.batch_norm1 = nn.BatchNorm1d(self.linear_size)
# Internal loop
for _ in range(num_stage):
self.linear_stages.append(MyLinearSimple(self.linear_size, self.p_dropout))
self.linear_stages = nn.ModuleList(self.linear_stages)
# Post processing
self.w2 = nn.Linear(self.linear_size, self.linear_size)
self.w3 = nn.Linear(self.linear_size, self.linear_size)
self.batch_norm3 = nn.BatchNorm1d(self.linear_size)
# ------------------------Other----------------------------------------------
# Auxiliary
self.w_aux = nn.Linear(self.linear_size, 1)
# Final
self.w_fin = nn.Linear(self.linear_size, self.output_size)
# NO-weight operations
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(self.p_dropout)
def forward(self, x):
y = self.w1(x)
y = self.batch_norm1(y)
y = self.relu(y)
y = self.dropout(y)
for i in range(self.num_stage):
y = self.linear_stages[i](y)
# Auxiliary task
y = self.w2(y)
aux = self.w_aux(y)
# Final layers
y = self.w3(y)
y = self.batch_norm3(y)
y = self.relu(y)
y = self.dropout(y)
y = self.w_fin(y)
# Cat with auxiliary task
y = torch.cat((y, aux), dim=1)
return y
class MyLinearSimple(nn.Module):
def __init__(self, linear_size, p_dropout=0.5):
super().__init__()
self.l_size = linear_size
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(p_dropout)
self.w1 = nn.Linear(self.l_size, self.l_size)
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
self.w2 = nn.Linear(self.l_size, self.l_size)
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
def forward(self, x):
y = self.w1(x)
y = self.batch_norm1(y)
y = self.relu(y)
y = self.dropout(y)
y = self.w2(y)
y = self.batch_norm2(y)
y = self.relu(y)
y = self.dropout(y)
out = x + y
return out
class MonolocoModel(nn.Module):
"""
Architecture inspired by https://github.com/una-dinosauria/3d-pose-baseline
Pytorch implementation from: https://github.com/weigq/3d_pose_baseline_pytorch
"""
def __init__(self, input_size, output_size=2, linear_size=256, p_dropout=0.2, num_stage=3):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.linear_size = linear_size
self.p_dropout = p_dropout
self.num_stage = num_stage
# process input to linear size
self.w1 = nn.Linear(self.input_size, self.linear_size)
self.batch_norm1 = nn.BatchNorm1d(self.linear_size)
self.linear_stages = []
for _ in range(num_stage):
self.linear_stages.append(MyLinear(self.linear_size, self.p_dropout))
self.linear_stages = nn.ModuleList(self.linear_stages)
# post processing
self.w2 = nn.Linear(self.linear_size, self.output_size)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(self.p_dropout)
def forward(self, x):
# pre-processing
y = self.w1(x)
y = self.batch_norm1(y)
y = self.relu(y)
y = self.dropout(y)
# linear layers
for i in range(self.num_stage):
y = self.linear_stages[i](y)
y = self.w2(y)
return y
class MyLinear(nn.Module):
def __init__(self, linear_size, p_dropout=0.5):
super().__init__()
self.l_size = linear_size
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(p_dropout)
self.w1 = nn.Linear(self.l_size, self.l_size)
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
self.w2 = nn.Linear(self.l_size, self.l_size)
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
def forward(self, x):
y = self.w1(x)
y = self.batch_norm1(y)
y = self.relu(y)
y = self.dropout(y)
y = self.w2(y)
y = self.batch_norm2(y)
y = self.relu(y)
y = self.dropout(y)
out = x + y
return out