- Add continuous integration - Add Versioneer - Refactor of preprocessing - Add tables of evaluation
177 lines
4.8 KiB
Python
177 lines
4.8 KiB
Python
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class LocoModel(nn.Module):
|
|
|
|
def __init__(self, input_size, output_size=2, linear_size=512, p_dropout=0.2, num_stage=3, device='cuda'):
|
|
super().__init__()
|
|
|
|
self.num_stage = num_stage
|
|
self.stereo_size = input_size
|
|
self.mono_size = int(input_size / 2)
|
|
self.output_size = output_size - 1
|
|
self.linear_size = linear_size
|
|
self.p_dropout = p_dropout
|
|
self.num_stage = num_stage
|
|
self.linear_stages = []
|
|
self.device = device
|
|
|
|
# Initialize weights
|
|
|
|
# Preprocessing
|
|
self.w1 = nn.Linear(self.stereo_size, self.linear_size)
|
|
self.batch_norm1 = nn.BatchNorm1d(self.linear_size)
|
|
|
|
# Internal loop
|
|
for _ in range(num_stage):
|
|
self.linear_stages.append(MyLinearSimple(self.linear_size, self.p_dropout))
|
|
self.linear_stages = nn.ModuleList(self.linear_stages)
|
|
|
|
# Post processing
|
|
self.w2 = nn.Linear(self.linear_size, self.linear_size)
|
|
self.w3 = nn.Linear(self.linear_size, self.linear_size)
|
|
self.batch_norm3 = nn.BatchNorm1d(self.linear_size)
|
|
|
|
# ------------------------Other----------------------------------------------
|
|
# Auxiliary
|
|
self.w_aux = nn.Linear(self.linear_size, 1)
|
|
|
|
# Final
|
|
self.w_fin = nn.Linear(self.linear_size, self.output_size)
|
|
|
|
# NO-weight operations
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.dropout = nn.Dropout(self.p_dropout)
|
|
|
|
def forward(self, x):
|
|
|
|
y = self.w1(x)
|
|
y = self.batch_norm1(y)
|
|
y = self.relu(y)
|
|
y = self.dropout(y)
|
|
|
|
for i in range(self.num_stage):
|
|
y = self.linear_stages[i](y)
|
|
|
|
# Auxiliary task
|
|
y = self.w2(y)
|
|
aux = self.w_aux(y)
|
|
|
|
# Final layers
|
|
y = self.w3(y)
|
|
y = self.batch_norm3(y)
|
|
y = self.relu(y)
|
|
y = self.dropout(y)
|
|
y = self.w_fin(y)
|
|
|
|
# Cat with auxiliary task
|
|
y = torch.cat((y, aux), dim=1)
|
|
return y
|
|
|
|
|
|
class MyLinearSimple(nn.Module):
|
|
def __init__(self, linear_size, p_dropout=0.5):
|
|
super().__init__()
|
|
self.l_size = linear_size
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.dropout = nn.Dropout(p_dropout)
|
|
|
|
self.w1 = nn.Linear(self.l_size, self.l_size)
|
|
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
|
|
|
|
self.w2 = nn.Linear(self.l_size, self.l_size)
|
|
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
|
|
|
|
def forward(self, x):
|
|
|
|
y = self.w1(x)
|
|
y = self.batch_norm1(y)
|
|
y = self.relu(y)
|
|
y = self.dropout(y)
|
|
|
|
y = self.w2(y)
|
|
y = self.batch_norm2(y)
|
|
y = self.relu(y)
|
|
y = self.dropout(y)
|
|
|
|
out = x + y
|
|
|
|
return out
|
|
|
|
|
|
class MonolocoModel(nn.Module):
|
|
"""
|
|
Architecture inspired by https://github.com/una-dinosauria/3d-pose-baseline
|
|
Pytorch implementation from: https://github.com/weigq/3d_pose_baseline_pytorch
|
|
"""
|
|
|
|
def __init__(self, input_size, output_size=2, linear_size=256, p_dropout=0.2, num_stage=3):
|
|
super().__init__()
|
|
|
|
self.input_size = input_size
|
|
self.output_size = output_size
|
|
self.linear_size = linear_size
|
|
self.p_dropout = p_dropout
|
|
self.num_stage = num_stage
|
|
|
|
# process input to linear size
|
|
self.w1 = nn.Linear(self.input_size, self.linear_size)
|
|
self.batch_norm1 = nn.BatchNorm1d(self.linear_size)
|
|
|
|
self.linear_stages = []
|
|
for _ in range(num_stage):
|
|
self.linear_stages.append(MyLinear(self.linear_size, self.p_dropout))
|
|
self.linear_stages = nn.ModuleList(self.linear_stages)
|
|
|
|
# post processing
|
|
self.w2 = nn.Linear(self.linear_size, self.output_size)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.dropout = nn.Dropout(self.p_dropout)
|
|
|
|
def forward(self, x):
|
|
# pre-processing
|
|
y = self.w1(x)
|
|
y = self.batch_norm1(y)
|
|
y = self.relu(y)
|
|
y = self.dropout(y)
|
|
# linear layers
|
|
for i in range(self.num_stage):
|
|
y = self.linear_stages[i](y)
|
|
y = self.w2(y)
|
|
return y
|
|
|
|
|
|
class MyLinear(nn.Module):
|
|
def __init__(self, linear_size, p_dropout=0.5):
|
|
super().__init__()
|
|
self.l_size = linear_size
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.dropout = nn.Dropout(p_dropout)
|
|
|
|
self.w1 = nn.Linear(self.l_size, self.l_size)
|
|
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
|
|
|
|
self.w2 = nn.Linear(self.l_size, self.l_size)
|
|
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
|
|
|
|
def forward(self, x):
|
|
|
|
y = self.w1(x)
|
|
y = self.batch_norm1(y)
|
|
y = self.relu(y)
|
|
y = self.dropout(y)
|
|
|
|
y = self.w2(y)
|
|
y = self.batch_norm2(y)
|
|
y = self.relu(y)
|
|
y = self.dropout(y)
|
|
|
|
out = x + y
|
|
|
|
return out
|