* skeleton stereo_baselines * skeleton stereo_baselines (2) * combine stereo evaluation * fix stereo bugs * refactor for multiple baselines * temp * temp * fix disparity bug * fix bug on avg_disparity * cleaning * cleaning * cleaning (2) * methods_stereo variable * refactor evaluation * cleaning * create general mode to save txt files * temp * fix bug in compare errors * fix dicionary of iou * unify parser * skeleton pose baseline * update visualization names * refactor for modularity * multiple baselines running * update printing information * add evaluation files filter * refactor skeleton * refactor skeleton(2) * cleaning * working refactor without reid * add features and keypoints distinction * working reid representation * refactor to matricial form * while version * new for version * correct bug in updated for version * fix bugs in while version and reformat * add new counting * fix bug on counting * fix bug on evaluation * pylint cleaning * build new version * change test setting to allow flexibility on different platforms * pylint clening(2)
158 lines
4.4 KiB
Python
158 lines
4.4 KiB
Python
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
|
|
def get_calibration(path_txt):
|
|
"""Read calibration parameters from txt file:
|
|
For the left color camera we use P2 which is K * [I|t]
|
|
|
|
P = [fu, 0, x0, fu*t1-x0*t3
|
|
0, fv, y0, fv*t2-y0*t3
|
|
0, 0, 1, t3]
|
|
|
|
check also http://ksimek.github.io/2013/08/13/intrinsic/
|
|
|
|
Simple case test:
|
|
xyz = np.array([2, 3, 30, 1]).reshape(4, 1)
|
|
xyz_2 = xyz[0:-1] + tt
|
|
uv_temp = np.dot(kk, xyz_2)
|
|
uv_1 = uv_temp / uv_temp[-1]
|
|
kk_1 = np.linalg.inv(kk)
|
|
xyz_temp2 = np.dot(kk_1, uv_1)
|
|
xyz_new_2 = xyz_temp2 * xyz_2[2]
|
|
xyz_fin_2 = xyz_new_2 - tt
|
|
"""
|
|
|
|
with open(path_txt, "r") as ff:
|
|
file = ff.readlines()
|
|
p2_str = file[2].split()[1:]
|
|
p2_list = [float(xx) for xx in p2_str]
|
|
p2 = np.array(p2_list).reshape(3, 4)
|
|
|
|
p3_str = file[3].split()[1:]
|
|
p3_list = [float(xx) for xx in p3_str]
|
|
p3 = np.array(p3_list).reshape(3, 4)
|
|
|
|
kk, tt = get_translation(p2)
|
|
kk_right, tt_right = get_translation(p3)
|
|
|
|
return [kk, tt], [kk_right, tt_right]
|
|
|
|
|
|
def get_translation(pp):
|
|
"""Separate intrinsic matrix from translation and convert in lists"""
|
|
|
|
kk = pp[:, :-1]
|
|
f_x = kk[0, 0]
|
|
f_y = kk[1, 1]
|
|
x0, y0 = kk[2, 0:2]
|
|
aa, bb, t3 = pp[0:3, 3]
|
|
t1 = float((aa - x0*t3) / f_x)
|
|
t2 = float((bb - y0*t3) / f_y)
|
|
tt = [t1, t2, float(t3)]
|
|
return kk.tolist(), tt
|
|
|
|
|
|
def get_simplified_calibration(path_txt):
|
|
|
|
with open(path_txt, "r") as ff:
|
|
file = ff.readlines()
|
|
|
|
for line in file:
|
|
if line[:4] == 'K_02':
|
|
kk_str = line[4:].split()[1:]
|
|
kk_list = [float(xx) for xx in kk_str]
|
|
kk = np.array(kk_list).reshape(3, 3).tolist()
|
|
return kk
|
|
|
|
raise ValueError('Matrix K_02 not found in the file')
|
|
|
|
|
|
def check_conditions(line, category, method, thresh=0.3):
|
|
"""Check conditions of our or m3d txt file"""
|
|
|
|
check = False
|
|
assert category in ['pedestrian', 'cyclist', 'all']
|
|
|
|
if method == 'gt':
|
|
if category == 'all':
|
|
categories_gt = ['Pedestrian', 'Person_sitting', 'Cyclist']
|
|
else:
|
|
categories_gt = [category.upper()[0] + category[1:]] # Upper case names
|
|
if line.split()[0] in categories_gt:
|
|
check = True
|
|
|
|
elif method in ('m3d', '3dop'):
|
|
conf = float(line[15])
|
|
if line[0] == category and conf >= thresh:
|
|
check = True
|
|
|
|
elif method == 'monodepth':
|
|
check = True
|
|
|
|
else:
|
|
conf = float(line[15])
|
|
if conf >= thresh:
|
|
check = True
|
|
|
|
return check
|
|
|
|
|
|
def get_category(box, trunc, occ):
|
|
|
|
hh = box[3] - box[1]
|
|
if hh >= 40 and trunc <= 0.15 and occ <= 0:
|
|
cat = 'easy'
|
|
elif trunc <= 0.3 and occ <= 1 and hh >= 25:
|
|
cat = 'moderate'
|
|
elif trunc <= 0.5 and occ <= 2 and hh >= 25:
|
|
cat = 'hard'
|
|
else:
|
|
cat = 'excluded'
|
|
return cat
|
|
|
|
|
|
def split_training(names_gt, path_train, path_val):
|
|
"""Split training and validation images"""
|
|
set_gt = set(names_gt)
|
|
set_train = set()
|
|
set_val = set()
|
|
|
|
with open(path_train, "r") as f_train:
|
|
for line in f_train:
|
|
set_train.add(line[:-1] + '.txt')
|
|
with open(path_val, "r") as f_val:
|
|
for line in f_val:
|
|
set_val.add(line[:-1] + '.txt')
|
|
|
|
set_train = tuple(set_gt.intersection(set_train))
|
|
set_val = tuple(set_gt.intersection(set_val))
|
|
assert set_train and set_val, "No validation or training annotations"
|
|
return set_train, set_val
|
|
|
|
|
|
def parse_ground_truth(path_gt, category):
|
|
"""Parse KITTI ground truth files"""
|
|
boxes_gt = []
|
|
dds_gt = []
|
|
zzs_gt = []
|
|
truncs_gt = [] # Float from 0 to 1
|
|
occs_gt = [] # Either 0,1,2,3 fully visible, partly occluded, largely occluded, unknown
|
|
boxes_3d = []
|
|
|
|
with open(path_gt, "r") as f_gt:
|
|
for line_gt in f_gt:
|
|
if check_conditions(line_gt, category, method='gt'):
|
|
truncs_gt.append(float(line_gt.split()[1]))
|
|
occs_gt.append(int(line_gt.split()[2]))
|
|
boxes_gt.append([float(x) for x in line_gt.split()[4:8]])
|
|
loc_gt = [float(x) for x in line_gt.split()[11:14]]
|
|
wlh = [float(x) for x in line_gt.split()[8:11]]
|
|
boxes_3d.append(loc_gt + wlh)
|
|
zzs_gt.append(loc_gt[2])
|
|
dds_gt.append(math.sqrt(loc_gt[0] ** 2 + loc_gt[1] ** 2 + loc_gt[2] ** 2))
|
|
|
|
return boxes_gt, boxes_3d, dds_gt, zzs_gt, truncs_gt, occs_gt
|