Compare commits

...

No commits in common. "codecs" and "streams" have entirely different histories.

13 changed files with 504 additions and 485 deletions

View File

@ -26,7 +26,7 @@ grade:
tags:
- cs210
image:
name: registry.gitlab.com/fnux/cs210-grading-images/progfun2-codecs:20191027-dfbea8aed96096ed3af1cf1958549b97328d4c25
name: registry.gitlab.com/fnux/cs210-grading-images/progfun2-streams:20191030-43a7371aecb1bee74b8e4c3b0aba175f3ff4d0c6
entrypoint: [""]
allow_failure: true
before_script:

View File

@ -1,6 +1,7 @@
# CS-210: Codecs
# CS-210: Streams (Bloxorz)
Please follow the [instructions from the main course
respository](https://gitlab.epfl.ch/lamp/cs-210-functional-programming-2019/blob/master/week11/00-homework8.md).
respository](https://gitlab.epfl.ch/lamp/cs-210-functional-programming-2019/blob/master/week9/00-homework7.md).
Grading and submission details can be found [here](https://gitlab.epfl.ch/lamp/cs-210-functional-programming-2019/blob/master/week1/02-grading-and-submission.md).

View File

@ -1,16 +1,12 @@
course := "progfun2"
assignment := "codecs"
assignment := "streams"
name := course.value + "-" + assignment.value
testSuite := "codecs.CodecsSuite"
testSuite := "streams.BloxorzSuite"
scalaVersion := "0.19.0-RC1"
scalacOptions ++= Seq("-deprecation")
libraryDependencies ++= Seq(
("org.scalacheck" %% "scalacheck" % "1.14.2" % Test).withDottyCompat(scalaVersion.value),
("org.typelevel" %% "jawn-parser" % "0.14.2").withDottyCompat(scalaVersion.value),
"com.novocode" % "junit-interface" % "0.11" % Test
)
scalacOptions ++= Seq("-language:implicitConversions", "-deprecation")
libraryDependencies += "com.novocode" % "junit-interface" % "0.11" % Test
libraryDependencies += ("org.scalacheck" %% "scalacheck" % "1.14.2").withDottyCompat(scalaVersion.value)
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
initialCommands in console := """import codecs.{_, given}"""

Binary file not shown.

View File

@ -1,283 +0,0 @@
package codecs
/**
* A data type modeling JSON values.
*
* For example, the `42` integer JSON value can be modeled as `Json.Num(42)`
*/
sealed trait Json {
/**
* Try to decode this JSON value into a value of type `A` by using
* the given decoder.
*
* Note that you have to explicitly fix `A` type parameter when you call the method:
*
* {{{
* someJsonValue.decodeAs[User] // OK
* someJsonValue.decodeAs // Wrong!
* }}}
*/
def decodeAs[A](given decoder: Decoder[A]): Option[A] = decoder.decode(this)
}
object Json {
/** The JSON `null` value */
case object Null extends Json
/** JSON boolean values */
case class Bool(value: Boolean) extends Json
/** JSON numeric values */
case class Num(value: BigDecimal) extends Json
/** JSON string values */
case class Str(value: String) extends Json
/** JSON objects */
case class Obj(fields: Map[String, Json]) extends Json
/** JSON arrays */
case class Arr(items: List[Json]) extends Json
}
/**
* A type class that turns a value of type `A` into its JSON representation.
*/
trait Encoder[-A] {
def encode(value: A): Json
/**
* Transforms this `Encoder[A]` into an `Encoder[B]`, given a transformation function
* from `B` to `A`.
*
* For instance, given a `Encoder[String]`, we can get an `Encoder[UUID]`:
*
* {{{
* def uuidEncoder(given stringEncoder: Encoder[String]): Encoder[UUID] =
* stringEncoder.transform[UUID](uuid => uuid.toString)
* }}}
*
* This operation is also known as ?contramap?.
*/
def transform[B](f: B => A): Encoder[B] =
Encoder.fromFunction[B](value => this.encode(f(value)))
}
object Encoder extends GivenEncoders {
/**
* Convenient method for creating an instance of encoder from a function `f`
*/
def fromFunction[A](f: A => Json) = new Encoder[A] {
def encode(value: A): Json = f(value)
}
}
trait GivenEncoders {
/** An encoder for the `Unit` value */
given Encoder[Unit] = Encoder.fromFunction(_ => Json.Null)
/** An encoder for `Int` values */
given Encoder[Int] = Encoder.fromFunction(n => Json.Num(BigDecimal(n)))
/** An encoder for `String` values */
given Encoder[String] =
Encoder.fromFunction(str => Json.Str(str))
/** An encoder for `Boolean` values */
given Encoder[Boolean] =
Encoder.fromFunction(v => Json.Bool(v))
/**
* Encodes a list of values of type `A` into a JSON array containing
* the list elements encoded with the given `encoder`
*/
given [A](given encoder: Encoder[A]): Encoder[List[A]] =
Encoder.fromFunction(as => Json.Arr(as.map(encoder.encode)))
}
/**
* A specialization of `Encoder` that returns JSON objects only
*/
trait ObjectEncoder[-A] extends Encoder[A] {
// Refines the encoding result to `Json.Obj`
def encode(value: A): Json.Obj
/**
* Combines `this` encoder with `that` encoder.
* Returns an encoder producing a JSON object containing both
* fields of `this` encoder and fields of `that` encoder.
*/
def zip[B](that: ObjectEncoder[B]): ObjectEncoder[(A, B)] =
ObjectEncoder.fromFunction { (a, b) =>
Json.Obj(this.encode(a).fields ++ that.encode(b).fields)
}
}
object ObjectEncoder {
/**
* Convenient method for creating an instance of object encoder from a function `f`
*/
def fromFunction[A](f: A => Json.Obj): ObjectEncoder[A] = new ObjectEncoder[A] {
def encode(value: A): Json.Obj = f(value)
}
/**
* An encoder for values of type `A` that produces a JSON object with one field
* named according to the supplied `name` and containing the encoded value.
*/
def field[A](name: String)(given encoder: Encoder[A]): ObjectEncoder[A] =
ObjectEncoder.fromFunction(a => Json.Obj(Map(name -> encoder.encode(a))))
}
/**
* The dual of an encoder. Decodes a serialized value into its initial type `A`.
*/
trait Decoder[+A] {
/**
* @param data The data to de-serialize
* @return The decoded value wrapped in `Some`, or `None` if decoding failed
*/
def decode(data: Json): Option[A]
/**
* Combines `this` decoder with `that` decoder.
* Returns a decoder that invokes both `this` decoder and `that`
* decoder and returns a pair of decoded value in case both succeed,
* or `None` if at least one failed.
*/
def zip[B](that: Decoder[B]): Decoder[(A, B)] =
Decoder.fromFunction { json =>
this.decode(json).zip(that.decode(json))
}
/**
* Transforms this `Decoder[A]` into a `Decoder[B]`, given a transformation function
* from `A` to `B`.
*
* This operation is also known as ?map?.
*/
def transform[B](f: A => B): Decoder[B] =
Decoder.fromFunction(json => this.decode(json).map(f))
}
object Decoder extends GivenDecoders {
/**
* Convenient method to build a decoder instance from a function `f`
*/
def fromFunction[A](f: Json => Option[A]): Decoder[A] = new Decoder[A] {
def decode(data: Json): Option[A] = f(data)
}
/**
* Alternative method for creating decoder instances
*/
def fromPartialFunction[A](pf: PartialFunction[Json, A]): Decoder[A] =
fromFunction(pf.lift)
}
trait GivenDecoders {
/** A decoder for the `Unit` value */
given Decoder[Unit] =
Decoder.fromPartialFunction { case Json.Null => () }
/** A decoder for `Int` values. Hint: use the `isValidInt` method of `BigDecimal`. */
// TODO Define a given `Decoder[Int]` instance
given Decoder[Int] =
Decoder.fromFunction{ case Json.Num(v) => if v.isValidInt then Some(v.intValue) else None
case _ => None}
/** A decoder for `String` values */
// TODO Define a given `Decoder[String]` instance
given Decoder[String] =
Decoder.fromPartialFunction{ case Json.Str(str) => str}
/** A decoder for `Boolean` values */
// TODO Define a given `Decoder[Boolean]` instance
given Decoder[Boolean] =
Decoder.fromPartialFunction{ case Json.Bool(v) => v}
/**
* A decoder for JSON arrays. It decodes each item of the array
* using the given `decoder`. The resulting decoder succeeds only
* if all the JSON array items are successfully decoded.
*/
given [A](given decoder: Decoder[A]): Decoder[List[A]] =
Decoder.fromFunction {
case Json.Arr(items: List[Json]) => Some(items.map(v => decoder.decode(v).get))
case _ => None
}
/**
* A decoder for JSON objects. It decodes the value of a field of
* the supplied `name` using the given `decoder`.
*/
def field[A](name: String)(given decoder: Decoder[A]): Decoder[A] =
Decoder.fromFunction{
case Json.Obj(field: Map[String, Json]) => decoder.decode(field.get(name).get)
case _ => None
}
}
case class Person(name: String, age: Int)
object Person extends PersonCodecs
trait PersonCodecs {
/** The encoder for `Person` */
given Encoder[Person] =
ObjectEncoder.field[String]("name")
.zip(ObjectEncoder.field[Int]("age"))
.transform[Person](user => (user.name, user.age))
/** The corresponding decoder for `Person` */
given Decoder[Person] ={
Decoder.field[String]("name").zip(Decoder.field[Int]("age")).transform[Person](user => Person(user._1, user._2))
}
}
case class Contacts(people: List[Person])
object Contacts extends ContactsCodecs
trait ContactsCodecs {
// TODO Define the encoder and the decoder for `Contacts`
// The JSON representation of a value of type `Contacts` should be
// a JSON object with a single field named ?people? containing an
// array of values of type `Person` (reuse the `Person` codecs)
given Encoder[Contacts] =
ObjectEncoder.field[List[Person]]("people").transform[Contacts](c => c.people)
given Decoder[Contacts] =
Decoder.field[List[Person]]("people").transform[Contacts](p => Contacts(p))
}
// In case you want to try your code, here is a simple `Main`
// that can be used as a starting point. Otherwise, you can use
// the REPL (use the `console` sbt task).
object Main {
def main(args: Array[String]): Unit = {
println(renderJson(42))
println(renderJson("foo"))
val maybeJsonString = parseJson(""" "foo" """)
val maybeJsonObj = parseJson(""" { "name": "Alice", "age": 42 } """)
val maybeJsonObj2 = parseJson(""" { "name": "Alice", "age": "42" } """)
// Uncomment the following lines as you progress in the assignment
println(maybeJsonString.flatMap(_.decodeAs[Int]))
println(maybeJsonString.flatMap(_.decodeAs[String]))
println(maybeJsonObj.flatMap(_.decodeAs[Person]))
println(maybeJsonObj2.flatMap(_.decodeAs[Person]))
println(renderJson(Person("Bob", 66)))
}
}

View File

@ -1,74 +0,0 @@
package codecs
import org.typelevel.jawn.{ Parser, SimpleFacade }
import scala.collection.mutable
import scala.util.Try
// Utility methods that decode values from `String` JSON blobs, and
// render values to `String` JSON blobs
/**
* Parse a JSON document contained in a `String` value into a `Json` value, returns
* `None` in case the supplied `s` value is not a valid JSON document.
*/
def parseJson(s: String): Option[Json] = Parser.parseFromString[Json](s).toOption
/**
* Parse the JSON value from the supplied `s` parameter, and then try to decode
* it as a value of type `A` using the given `decoder`.
*
* Returns `None` if JSON parsing failed, or if decoding failed.
*/
def parseAndDecode[A](s: String)(given decoder: Decoder[A]): Option[A] =
for {
json <- parseJson(s)
a <- decoder.decode(json)
} yield a
/**
* Render the supplied `value` into JSON using the given `encoder`.
*/
def renderJson[A](value: A)(given encoder: Encoder[A]): String =
render(encoder.encode(value))
private def render(json: Json): String = json match {
case Json.Null => "null"
case Json.Bool(b) => b.toString
case Json.Num(n) => n.toString
case Json.Str(s) => renderString(s)
case Json.Arr(vs) => vs.map(render).mkString("[", ",", "]")
case Json.Obj(vs) => vs.map { case (k, v) => s"${renderString(k)}:${render(v)}" }.mkString("{", ",", "}")
}
private def renderString(s: String): String = {
val sb = new StringBuilder
sb.append('"')
var i = 0
val len = s.length
while (i < len) {
s.charAt(i) match {
case '"' => sb.append("\\\"")
case '\\' => sb.append("\\\\")
case '\b' => sb.append("\\b")
case '\f' => sb.append("\\f")
case '\n' => sb.append("\\n")
case '\r' => sb.append("\\r")
case '\t' => sb.append("\\t")
case c =>
if (c < ' ') sb.append("\\u%04x" format c.toInt)
else sb.append(c)
}
i += 1
}
sb.append('"').toString
}
given SimpleFacade[Json] {
def jnull() = Json.Null
def jtrue() = Json.Bool(true)
def jfalse() = Json.Bool(false)
def jnum(s: CharSequence, decIndex: Int, expIndex: Int) = Json.Num(BigDecimal(s.toString))
def jstring(s: CharSequence) = Json.Str(s.toString)
def jarray(vs: List[Json]) = Json.Arr(vs)
def jobject(vs: Map[String, Json]) = Json.Obj(vs)
}

View File

@ -0,0 +1,49 @@
package streams
/**
* A main object that can be used to execute the Bloxorz solver
*/
object Bloxorz extends App {
/**
* A level constructed using the `InfiniteTerrain` trait which defines
* the terrain to be valid at every position.
*/
object InfiniteLevel extends Solver with InfiniteTerrain {
val startPos = Pos(1,3)
val goal = Pos(5,8)
}
println(InfiniteLevel.solution)
/**
* A simple level constructed using the StringParserTerrain
*/
abstract class Level extends Solver with StringParserTerrain
object Level0 extends Level {
val level =
"""------
|--ST--
|--oo--
|--oo--
|------""".stripMargin
}
println(Level0.solution)
/**
* Level 1 of the official Bloxorz game
*/
object Level1 extends Level {
val level =
"""ooo-------
|oSoooo----
|ooooooooo-
|-ooooooooo
|-----ooToo
|------ooo-""".stripMargin
}
println(Level1.solution)
}

View File

@ -0,0 +1,170 @@
package streams
/**
* This trait represents the layout and building blocks of the game
*/
trait GameDef {
/**
* The case class `Pos` encodes positions in the terrain.
*
* IMPORTANT NOTE
* - The `row` coordinate denotes the position on the vertical axis
* - The `col` coordinate is used for the horizontal axis
* - The coordinates increase when moving down and right
*
* Illustration:
*
* 0 1 2 3 <- col axis
* 0 o o o o
* 1 o o o o
* 2 o # o o # is at position Pos(2, 1)
* 3 o o o o
*
* ^
* |
*
* row axis
*/
case class Pos(row: Int, col: Int) {
/** The position obtained by changing the `row` coordinate by `d` */
def deltaRow(d: Int): Pos = copy(row = row + d)
/** The position obtained by changing the `col` coordinate by `d` */
def deltaCol(d: Int): Pos = copy(col = col + d)
}
/**
* The position where the block is located initially.
*
* This value is left abstract, it will be defined in concrete
* instances of the game.
*/
def startPos: Pos
/**
* The target position where the block has to go.
* This value is left abstract.
*/
def goal: Pos
/**
* The terrain is represented as a function from positions to
* booleans. The function returns `true` for every position that
* is inside the terrain.
*
* As explained in the documentation of class `Pos`, the `row` axis
* is the vertical one and increases from top to bottom.
*/
type Terrain = Pos => Boolean
/**
* The terrain of this game. This value is left abstract.
*/
def terrain: Terrain
/**
* In Bloxorz, we can move left, right, Up or down.
* These moves are encoded as case objects.
*/
sealed abstract class Move
case object Left extends Move
case object Right extends Move
case object Up extends Move
case object Down extends Move
/**
* This function returns the block at the start position of
* the game.
*/
def startBlock: Block = Block(startPos, startPos)
/**
* A block is represented by the position of the two cubes that
* it consists of. We make sure that `b1` is lexicographically
* smaller than `b2`.
*/
case class Block(b1: Pos, b2: Pos) {
// checks the requirement mentioned above
require(b1.row <= b2.row && b1.col <= b2.col, s"Invalid block position: b1=$b1, b2=$b2")
/**
* Returns a block where the `row` coordinates of `b1` and `b2` are
* changed by `d1` and `d2`, respectively.
*/
def deltaRow(d1: Int, d2: Int) = Block(b1.deltaRow(d1), b2.deltaRow(d2))
/**
* Returns a block where the `col` coordinates of `b1` and `b2` are
* changed by `d1` and `d2`, respectively.
*/
def deltaCol(d1: Int, d2: Int) = Block(b1.deltaCol(d1), b2.deltaCol(d2))
/** The block obtained by moving left */
def left =
if isStanding then
deltaCol(-2, -1)
else if b1.row == b2.row then
deltaCol(-1, -2)
else
deltaCol(-1, -1)
/** The block obtained by moving right */
def right =
if isStanding then
deltaCol(1, 2)
else if b1.row == b2.row then
deltaCol(2, 1)
else
deltaCol(1, 1)
/** The block obtained by moving up */
def up =
if isStanding then
deltaRow(-2, -1)
else if b1.row == b2.row then
deltaRow(-1, -1)
else
deltaRow(-1, -2)
/** The block obtained by moving down */
def down =
if isStanding then
deltaRow(1, 2)
else if b1.row == b2.row then
deltaRow(1, 1)
else
deltaRow(2, 1)
/**
* Returns the list of blocks that can be obtained by moving
* the current block, together with the corresponding move.
*/
def neighbors: List[(Block, Move)] =
List((left, Left), (right, Right), (up, Up), (down, Down))
/**
* Returns the list of positions reachable from the current block
* which are inside the terrain.
*/
def legalNeighbors: List[(Block, Move)] = neighbors.filter{
case (b, _) => b.isLegal
}
/**
* Returns `true` if the block is standing.
*/
def isStanding: Boolean = b1 == b2
/**
* Returns `true` if the block is entirely inside the terrain.
*/
def isLegal: Boolean = terrain(b1) && terrain(b2)
}
}

View File

@ -0,0 +1,15 @@
package streams
/**
* This trait defines an infinite terrain, where the block can
* go on any position.
*
* It keeps the `startPos` and the `goal` positions abstract.
*
* Using this trait is useful for testing. It can be used to find
* the shortest path between two positions without terrain
* restrictions.
*/
trait InfiniteTerrain extends GameDef {
val terrain: Terrain = (pos: Pos) => true
}

View File

@ -0,0 +1,103 @@
package streams
/**
* This component implements the solver for the Bloxorz game
*/
trait Solver extends GameDef {
/**
* Returns `true` if the block `b` is at the final position
*/
def done(b: Block): Boolean = b.b1 == goal && b.isStanding
/**
* This function takes two arguments: the current block `b` and
* a list of moves `history` that was required to reach the
* position of `b`.
*
* The `head` element of the `history` list is the latest move
* that was executed, i.e. the last move that was performed for
* the block to end up at position `b`.
*
* The function returns a lazy list of pairs: the first element of
* the each pair is a neighboring block, and the second element
* is the augmented history of moves required to reach this block.
*
* It should only return valid neighbors, i.e. block positions
* that are inside the terrain.
*/
def neighborsWithHistory(b: Block, history: List[Move]): LazyList[(Block, List[Move])] = {
lazy val result = b.legalNeighbors.map({pair=> (pair._1, pair._2 +: history)})
result.to(LazyList)
}
/**
* This function returns the list of neighbors without the block
* positions that have already been explored. We will use it to
* make sure that we don't explore circular paths.
*/
def newNeighborsOnly(neighbors: LazyList[(Block, List[Move])],
explored: Set[Block]): LazyList[(Block, List[Move])] = {
neighbors.filter(n => !explored.contains(n._1))
}
/**
* The function `from` returns the lazy list of all possible paths
* that can be followed, starting at the `head` of the `initial`
* lazy list.
*
* The blocks in the lazy list `initial` are sorted by ascending path
* length: the block positions with the shortest paths (length of
* move list) are at the head of the lazy list.
*
* The parameter `explored` is a set of block positions that have
* been visited before, on the path to any of the blocks in the
* lazy list `initial`. When search reaches a block that has already
* been explored before, that position should not be included a
* second time to avoid cycles.
*
* The resulting lazy list should be sorted by ascending path length,
* i.e. the block positions that can be reached with the fewest
* amount of moves should appear first in the lazy list.
*
* Note: the solution should not look at or compare the lengths
* of different paths - the implementation should naturally
* construct the correctly sorted lazy list.
*/
def from(initial: LazyList[(Block, List[Move])],
explored: Set[Block]): LazyList[(Block, List[Move])] = {
if (initial.isEmpty) LazyList.empty
else {
val more = for {
pair <- initial
next <- newNeighborsOnly (neighborsWithHistory(pair._1, pair._2), explored)
} yield next
initial #::: from(more, explored ++ (more.map(_._1)))
}
}
/**
* The lazy list of all paths that begin at the starting block.
*/
lazy val pathsFromStart: LazyList[(Block, List[Move])] = from(neighborsWithHistory(startBlock, List[Move]()), Set(startBlock))
/**
* Returns a lazy list of all possible pairs of the goal block along
* with the history how it was reached.
*/
lazy val pathsToGoal: LazyList[(Block, List[Move])] = pathsFromStart.filter({case (b, m) => done(b)})
/**
* The (or one of the) shortest sequence(s) of moves to reach the
* goal. If the goal cannot be reached, the empty list is returned.
*
* Note: the `head` element of the returned list should represent
* the first move that the player should perform from the starting
* position.
*/
lazy val solution: List[Move] = pathsToGoal.headOption match {
case None => List.empty
case Some(pair) => (pair._2).reverse
}
}

View File

@ -0,0 +1,83 @@
package streams
/**
* This component implements a parser to define terrains from a
* graphical ASCII representation.
*
* When mixing in that component, a level can be defined by
* defining the field `level` in the following form:
*
* val level =
* """------
* |--ST--
* |--oo--
* |--oo--
* |------""".stripMargin
*
* - The `-` character denotes parts which are outside the terrain
* - `o` denotes fields which are part of the terrain
* - `S` denotes the start position of the block (which is also considered
inside the terrain)
* - `T` denotes the final position of the block (which is also considered
inside the terrain)
*
* In this example, the first and last lines could be omitted, and
* also the columns that consist of `-` characters only.
*/
trait StringParserTerrain extends GameDef {
/**
* A ASCII representation of the terrain. This field should remain
* abstract here.
*/
val level: String
/**
* This method returns terrain function that represents the terrain
* in `levelVector`. The vector contains parsed version of the `level`
* string. For example, the following level
*
* val level =
* """ST
* |oo
* |oo""".stripMargin
*
* is represented as
*
* Vector(Vector('S', 'T'), Vector('o', 'o'), Vector('o', 'o'))
*
* The resulting function should return `true` if the position `pos` is
* a valid position (not a '-' character) inside the terrain described
* by `levelVector`.
*/
def terrainFunction(levelVector: Vector[Vector[Char]]): Pos => Boolean = {
case Pos(x,y) => (for{
row <- levelVector.lift(x)
ch <- row.lift(y)
if(ch != '-')
} yield ch).isDefined
}
/**
* This function should return the position of character `c` in the
* terrain described by `levelVector`. You can assume that the `c`
* appears exactly once in the terrain.
*
* Hint: you can use the functions `indexWhere` and / or `indexOf` of the
* `Vector` class
*/
def findChar(c: Char, levelVector: Vector[Vector[Char]]): Pos = {
val ys = levelVector.map(_.indexOf(c))
val x = ys.indexWhere(_ >= 0)
Pos(x, ys(x))
}
private lazy val vector: Vector[Vector[Char]] =
Vector(level.split("\r?\n").map(str => Vector(str: _*)).toIndexedSeq: _*)
lazy val terrain: Terrain = terrainFunction(vector)
lazy val startPos: Pos = findChar('S', vector)
lazy val goal: Pos = findChar('T', vector)
}

View File

@ -1,115 +0,0 @@
package codecs
import org.scalacheck
import org.scalacheck.{ Gen, Prop }
import org.scalacheck.Prop.propBoolean
import org.junit.{ Assert, Test }
import scala.reflect.ClassTag
class CodecsSuite extends GivenEncoders, GivenDecoders, PersonCodecs, ContactsCodecs, TestEncoders, TestDecoders {
def checkProperty(prop: Prop): Unit = {
val result = scalacheck.Test.check(scalacheck.Test.Parameters.default, prop)
def fail(labels: Set[String], fallback: String): Nothing =
if labels.isEmpty then throw new AssertionError(fallback)
else throw new AssertionError(labels.mkString(". "))
result.status match {
case scalacheck.Test.Passed | _: scalacheck.Test.Proved => ()
case scalacheck.Test.Failed(_, labels) => fail(labels, "A property failed.")
case scalacheck.Test.PropException(_, e, labels) => fail(labels, s"An exception was thrown during property evaluation: $e.")
case scalacheck.Test.Exhausted => fail(Set.empty, "Unable to generate data.")
}
}
/**
* Check that a value of an arbitrary type `A` can be encoded and then successfully
* decoded with the given pair of encoder and decoder.
*/
def encodeAndThenDecodeProp[A](a: A)(given encA: Encoder[A], decA: Decoder[A]): Prop = {
val maybeDecoded = decA.decode(encA.encode(a))
maybeDecoded.contains(a) :| s"Encoded value '$a' was not successfully decoded. Got '$maybeDecoded'."
}
@Test def `it is possible to encode and decode the 'Unit' value (0pts)`(): Unit = {
checkProperty(Prop.forAll((unit: Unit) => encodeAndThenDecodeProp(unit)))
}
@Test def `it is possible to encode and decode 'Int' values (1pt)`(): Unit = {
checkProperty(Prop.forAll((x: Int) => encodeAndThenDecodeProp(x)))
}
@Test def `the 'Int' decoder should reject invalid 'Int' values (2pts)`(): Unit = {
val decoded = summon[Decoder[Int]].decode(Json.Num(4.2))
assert(decoded.isEmpty, "decoding 4.2 as an integer value should fail")
}
@Test def `a 'String' value should be encoded as a JSON string (1pt)`(): Unit = {
assert(summon[Encoder[String]].encode("foo") == Json.Str("foo"))
}
@Test def `it is possible to encode and decode 'String' values (1pt)`(): Unit = {
checkProperty(Prop.forAll((s: String) => encodeAndThenDecodeProp(s)))
}
@Test def `a 'Boolean' value should be encoded as a JSON boolean (1pt)`(): Unit = {
val encoder = summon[Encoder[Boolean]]
assert(encoder.encode(true) == Json.Bool(true))
assert(encoder.encode(false) == Json.Bool(false))
}
@Test def `it is possible to encode and decode 'Boolean' values (1pt)`(): Unit = {
checkProperty(Prop.forAll((b: Boolean) => encodeAndThenDecodeProp(b)))
}
@Test def `a 'List[A]' value should be encoded as a JSON array (0pts)`(): Unit = {
val xs = 1 :: 2 :: Nil
val encoder = summon[Encoder[List[Int]]]
assert(encoder.encode(xs) == Json.Arr(List(Json.Num(1), Json.Num(2))))
}
@Test def `it is possible to encode and decode lists (5pts)`(): Unit = {
checkProperty(Prop.forAll((xs: List[Int]) => encodeAndThenDecodeProp(xs)))
}
@Test def `a 'Person' value should be encoded as a JSON object (1pt)`(): Unit = {
val person = Person("Alice", 42)
val json = Json.Obj(Map("name" -> Json.Str("Alice"), "age" -> Json.Num(42)))
val encoder = summon[Encoder[Person]]
assert(encoder.encode(person) == json)
}
@Test def `it is possible to encode and decode people (4pts)`(): Unit = {
checkProperty(Prop.forAll((s: String, x: Int) => encodeAndThenDecodeProp(Person(s, x))))
}
@Test def `a 'Contacts' value should be encoded as a JSON object (1pt)`(): Unit = {
val contacts = Contacts(List(Person("Alice", 42)))
val json = Json.Obj(Map("people" ->
Json.Arr(List(Json.Obj(Map("name" -> Json.Str("Alice"), "age" -> Json.Num(42)))))
))
val encoder = summon[Encoder[Contacts]]
assert(encoder.encode(contacts) == json)
}
@Test def `it is possible to encode and decode contacts (4pts)`(): Unit = {
val peopleGenerator = Gen.listOf(Gen.resultOf((s: String, x: Int) => Person(s, x)))
checkProperty(Prop.forAll(peopleGenerator)(people => encodeAndThenDecodeProp(Contacts(people))))
}
}
trait TestEncoders extends EncoderFallbackInstance
trait EncoderFallbackInstance {
given [A](given ct: ClassTag[A]): Encoder[A] = throw new AssertionError(s"No given instance of `Encoder[${ct.runtimeClass.getSimpleName}]`")
}
trait TestDecoders extends DecoderFallbackInstance
trait DecoderFallbackInstance {
given [A](given ct: ClassTag[A]): Decoder[A] = throw new AssertionError(s"No given instance of `Decoder[${ct.runtimeClass.getSimpleName}]")
}

View File

@ -0,0 +1,74 @@
package streams
import org.junit._
import org.junit.Assert.assertEquals
import Bloxorz._
class BloxorzSuite {
trait SolutionChecker extends GameDef with Solver with StringParserTerrain {
/**
* This method applies a list of moves `ls` to the block at position
* `startPos`. This can be used to verify if a certain list of moves
* is a valid solution, i.e. leads to the goal.
*/
def solve(ls: List[Move]): Block =
ls.foldLeft(startBlock) { case (block, move) =>
require(block.isLegal) // The solution must always lead to legal blocks
move match
case Left => block.left
case Right => block.right
case Up => block.up
case Down => block.down
}
}
trait Level1 extends SolutionChecker {
/* terrain for level 1*/
val level =
"""ooo-------
|oSoooo----
|ooooooooo-
|-ooooooooo
|-----ooToo
|------ooo-""".stripMargin
val optsolution = List(Right, Right, Down, Right, Right, Right, Down)
}
@Test def `terrain function level 1 (10pts)`: Unit =
new Level1 {
assert(terrain(Pos(0,0)), "0,0")
assert(terrain(Pos(1,1)), "1,1") // start
assert(terrain(Pos(4,7)), "4,7") // goal
assert(terrain(Pos(5,8)), "5,8")
assert(!terrain(Pos(5,9)), "5,9")
assert(terrain(Pos(4,9)), "4,9")
assert(!terrain(Pos(6,8)), "6,8")
assert(!terrain(Pos(4,11)), "4,11")
assert(!terrain(Pos(-1,0)), "-1,0")
assert(!terrain(Pos(0,-1)), "0,-1")
}
@Test def `find char level 1 (10pts)`: Unit =
new Level1 {
assertEquals(Pos(1, 1), startPos)
}
@Test def `optimal solution for level 1 (5pts)`: Unit =
new Level1 {
assertEquals(Block(goal, goal), solve(solution))
}
@Test def `optimal solution length for level 1 (5pts)`: Unit =
new Level1 {
assertEquals(optsolution.length, solution.length)
}
@Rule def individualTestTimeout = new org.junit.rules.Timeout(10 * 1000)
}