Compare commits

..

No commits in common. "codecs" and "forcomp" have entirely different histories.

13 changed files with 45669 additions and 495 deletions

View File

@ -7,9 +7,7 @@ stages:
compile:
stage: build
image: lampepfl/moocs-dotty:2019-10-16
except:
- tags
image: lampepfl/moocs-dotty:2019-09-17-2
tags:
- cs210
script:
@ -21,12 +19,10 @@ compile:
grade:
stage: grade
except:
- tags
tags:
- cs210
image:
name: registry.gitlab.com/fnux/cs210-grading-images/progfun2-codecs:20191027-dfbea8aed96096ed3af1cf1958549b97328d4c25
name: registry.gitlab.com/fnux/cs210-grading-images/progfun1-patmat:20191016-626d0012efc94653bff8736b2570386000f65ea2
entrypoint: [""]
allow_failure: true
before_script:

View File

@ -1,6 +1,7 @@
# CS-210: Codecs
# CS-210: For-comprehensions and Collections
Please follow the [instructions from the main course
respository](https://gitlab.epfl.ch/lamp/cs-210-functional-programming-2019/blob/master/week11/00-homework8.md).
respository](https://gitlab.epfl.ch/lamp/cs-210-functional-programming-2019/blob/master/week5/00-homework5.md).
Grading and submission details can be found [here](https://gitlab.epfl.ch/lamp/cs-210-functional-programming-2019/blob/master/week1/02-grading-and-submission.md).

View File

@ -1,16 +1,12 @@
course := "progfun2"
assignment := "codecs"
course := "progfun1"
assignment := "forcomp"
name := course.value + "-" + assignment.value
testSuite := "codecs.CodecsSuite"
testSuite := "forcomp.AnagramsSuite"
scalaVersion := "0.19.0-RC1"
scalacOptions ++= Seq("-deprecation")
libraryDependencies ++= Seq(
("org.scalacheck" %% "scalacheck" % "1.14.2" % Test).withDottyCompat(scalaVersion.value),
("org.typelevel" %% "jawn-parser" % "0.14.2").withDottyCompat(scalaVersion.value),
"com.novocode" % "junit-interface" % "0.11" % Test
)
scalaVersion := "0.19.0-bin-20190918-dd68eb8-NIGHTLY"
scalacOptions ++= Seq("-language:implicitConversions", "-deprecation")
libraryDependencies += "com.novocode" % "junit-interface" % "0.11" % Test
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
initialCommands in console := """import codecs.{_, given}"""

Binary file not shown.

View File

@ -18,8 +18,6 @@ object MOOCSettings extends AutoPlugin {
override def trigger = allRequirements
override val projectSettings: Seq[Def.Setting[_]] = Seq(
parallelExecution in Test := false,
// Report test result after each test instead of waiting for every test to finish
logBuffered in Test := false
parallelExecution in Test := false
)
}

View File

@ -1,3 +1,4 @@
libraryDependencies += "com.novocode" % "junit-interface" % "0.11" % Test
// Used for base64 encoding
libraryDependencies += "commons-codec" % "commons-codec" % "1.10"

File diff suppressed because it is too large Load Diff

View File

@ -1,283 +0,0 @@
package codecs
/**
* A data type modeling JSON values.
*
* For example, the `42` integer JSON value can be modeled as `Json.Num(42)`
*/
sealed trait Json {
/**
* Try to decode this JSON value into a value of type `A` by using
* the given decoder.
*
* Note that you have to explicitly fix `A` type parameter when you call the method:
*
* {{{
* someJsonValue.decodeAs[User] // OK
* someJsonValue.decodeAs // Wrong!
* }}}
*/
def decodeAs[A](given decoder: Decoder[A]): Option[A] = decoder.decode(this)
}
object Json {
/** The JSON `null` value */
case object Null extends Json
/** JSON boolean values */
case class Bool(value: Boolean) extends Json
/** JSON numeric values */
case class Num(value: BigDecimal) extends Json
/** JSON string values */
case class Str(value: String) extends Json
/** JSON objects */
case class Obj(fields: Map[String, Json]) extends Json
/** JSON arrays */
case class Arr(items: List[Json]) extends Json
}
/**
* A type class that turns a value of type `A` into its JSON representation.
*/
trait Encoder[-A] {
def encode(value: A): Json
/**
* Transforms this `Encoder[A]` into an `Encoder[B]`, given a transformation function
* from `B` to `A`.
*
* For instance, given a `Encoder[String]`, we can get an `Encoder[UUID]`:
*
* {{{
* def uuidEncoder(given stringEncoder: Encoder[String]): Encoder[UUID] =
* stringEncoder.transform[UUID](uuid => uuid.toString)
* }}}
*
* This operation is also known as ?contramap?.
*/
def transform[B](f: B => A): Encoder[B] =
Encoder.fromFunction[B](value => this.encode(f(value)))
}
object Encoder extends GivenEncoders {
/**
* Convenient method for creating an instance of encoder from a function `f`
*/
def fromFunction[A](f: A => Json) = new Encoder[A] {
def encode(value: A): Json = f(value)
}
}
trait GivenEncoders {
/** An encoder for the `Unit` value */
given Encoder[Unit] = Encoder.fromFunction(_ => Json.Null)
/** An encoder for `Int` values */
given Encoder[Int] = Encoder.fromFunction(n => Json.Num(BigDecimal(n)))
/** An encoder for `String` values */
given Encoder[String] =
Encoder.fromFunction(str => Json.Str(str))
/** An encoder for `Boolean` values */
given Encoder[Boolean] =
Encoder.fromFunction(v => Json.Bool(v))
/**
* Encodes a list of values of type `A` into a JSON array containing
* the list elements encoded with the given `encoder`
*/
given [A](given encoder: Encoder[A]): Encoder[List[A]] =
Encoder.fromFunction(as => Json.Arr(as.map(encoder.encode)))
}
/**
* A specialization of `Encoder` that returns JSON objects only
*/
trait ObjectEncoder[-A] extends Encoder[A] {
// Refines the encoding result to `Json.Obj`
def encode(value: A): Json.Obj
/**
* Combines `this` encoder with `that` encoder.
* Returns an encoder producing a JSON object containing both
* fields of `this` encoder and fields of `that` encoder.
*/
def zip[B](that: ObjectEncoder[B]): ObjectEncoder[(A, B)] =
ObjectEncoder.fromFunction { (a, b) =>
Json.Obj(this.encode(a).fields ++ that.encode(b).fields)
}
}
object ObjectEncoder {
/**
* Convenient method for creating an instance of object encoder from a function `f`
*/
def fromFunction[A](f: A => Json.Obj): ObjectEncoder[A] = new ObjectEncoder[A] {
def encode(value: A): Json.Obj = f(value)
}
/**
* An encoder for values of type `A` that produces a JSON object with one field
* named according to the supplied `name` and containing the encoded value.
*/
def field[A](name: String)(given encoder: Encoder[A]): ObjectEncoder[A] =
ObjectEncoder.fromFunction(a => Json.Obj(Map(name -> encoder.encode(a))))
}
/**
* The dual of an encoder. Decodes a serialized value into its initial type `A`.
*/
trait Decoder[+A] {
/**
* @param data The data to de-serialize
* @return The decoded value wrapped in `Some`, or `None` if decoding failed
*/
def decode(data: Json): Option[A]
/**
* Combines `this` decoder with `that` decoder.
* Returns a decoder that invokes both `this` decoder and `that`
* decoder and returns a pair of decoded value in case both succeed,
* or `None` if at least one failed.
*/
def zip[B](that: Decoder[B]): Decoder[(A, B)] =
Decoder.fromFunction { json =>
this.decode(json).zip(that.decode(json))
}
/**
* Transforms this `Decoder[A]` into a `Decoder[B]`, given a transformation function
* from `A` to `B`.
*
* This operation is also known as ?map?.
*/
def transform[B](f: A => B): Decoder[B] =
Decoder.fromFunction(json => this.decode(json).map(f))
}
object Decoder extends GivenDecoders {
/**
* Convenient method to build a decoder instance from a function `f`
*/
def fromFunction[A](f: Json => Option[A]): Decoder[A] = new Decoder[A] {
def decode(data: Json): Option[A] = f(data)
}
/**
* Alternative method for creating decoder instances
*/
def fromPartialFunction[A](pf: PartialFunction[Json, A]): Decoder[A] =
fromFunction(pf.lift)
}
trait GivenDecoders {
/** A decoder for the `Unit` value */
given Decoder[Unit] =
Decoder.fromPartialFunction { case Json.Null => () }
/** A decoder for `Int` values. Hint: use the `isValidInt` method of `BigDecimal`. */
// TODO Define a given `Decoder[Int]` instance
given Decoder[Int] =
Decoder.fromFunction{ case Json.Num(v) => if v.isValidInt then Some(v.intValue) else None
case _ => None}
/** A decoder for `String` values */
// TODO Define a given `Decoder[String]` instance
given Decoder[String] =
Decoder.fromPartialFunction{ case Json.Str(str) => str}
/** A decoder for `Boolean` values */
// TODO Define a given `Decoder[Boolean]` instance
given Decoder[Boolean] =
Decoder.fromPartialFunction{ case Json.Bool(v) => v}
/**
* A decoder for JSON arrays. It decodes each item of the array
* using the given `decoder`. The resulting decoder succeeds only
* if all the JSON array items are successfully decoded.
*/
given [A](given decoder: Decoder[A]): Decoder[List[A]] =
Decoder.fromFunction {
case Json.Arr(items: List[Json]) => Some(items.map(v => decoder.decode(v).get))
case _ => None
}
/**
* A decoder for JSON objects. It decodes the value of a field of
* the supplied `name` using the given `decoder`.
*/
def field[A](name: String)(given decoder: Decoder[A]): Decoder[A] =
Decoder.fromFunction{
case Json.Obj(field: Map[String, Json]) => decoder.decode(field.get(name).get)
case _ => None
}
}
case class Person(name: String, age: Int)
object Person extends PersonCodecs
trait PersonCodecs {
/** The encoder for `Person` */
given Encoder[Person] =
ObjectEncoder.field[String]("name")
.zip(ObjectEncoder.field[Int]("age"))
.transform[Person](user => (user.name, user.age))
/** The corresponding decoder for `Person` */
given Decoder[Person] ={
Decoder.field[String]("name").zip(Decoder.field[Int]("age")).transform[Person](user => Person(user._1, user._2))
}
}
case class Contacts(people: List[Person])
object Contacts extends ContactsCodecs
trait ContactsCodecs {
// TODO Define the encoder and the decoder for `Contacts`
// The JSON representation of a value of type `Contacts` should be
// a JSON object with a single field named ?people? containing an
// array of values of type `Person` (reuse the `Person` codecs)
given Encoder[Contacts] =
ObjectEncoder.field[List[Person]]("people").transform[Contacts](c => c.people)
given Decoder[Contacts] =
Decoder.field[List[Person]]("people").transform[Contacts](p => Contacts(p))
}
// In case you want to try your code, here is a simple `Main`
// that can be used as a starting point. Otherwise, you can use
// the REPL (use the `console` sbt task).
object Main {
def main(args: Array[String]): Unit = {
println(renderJson(42))
println(renderJson("foo"))
val maybeJsonString = parseJson(""" "foo" """)
val maybeJsonObj = parseJson(""" { "name": "Alice", "age": 42 } """)
val maybeJsonObj2 = parseJson(""" { "name": "Alice", "age": "42" } """)
// Uncomment the following lines as you progress in the assignment
println(maybeJsonString.flatMap(_.decodeAs[Int]))
println(maybeJsonString.flatMap(_.decodeAs[String]))
println(maybeJsonObj.flatMap(_.decodeAs[Person]))
println(maybeJsonObj2.flatMap(_.decodeAs[Person]))
println(renderJson(Person("Bob", 66)))
}
}

View File

@ -1,74 +0,0 @@
package codecs
import org.typelevel.jawn.{ Parser, SimpleFacade }
import scala.collection.mutable
import scala.util.Try
// Utility methods that decode values from `String` JSON blobs, and
// render values to `String` JSON blobs
/**
* Parse a JSON document contained in a `String` value into a `Json` value, returns
* `None` in case the supplied `s` value is not a valid JSON document.
*/
def parseJson(s: String): Option[Json] = Parser.parseFromString[Json](s).toOption
/**
* Parse the JSON value from the supplied `s` parameter, and then try to decode
* it as a value of type `A` using the given `decoder`.
*
* Returns `None` if JSON parsing failed, or if decoding failed.
*/
def parseAndDecode[A](s: String)(given decoder: Decoder[A]): Option[A] =
for {
json <- parseJson(s)
a <- decoder.decode(json)
} yield a
/**
* Render the supplied `value` into JSON using the given `encoder`.
*/
def renderJson[A](value: A)(given encoder: Encoder[A]): String =
render(encoder.encode(value))
private def render(json: Json): String = json match {
case Json.Null => "null"
case Json.Bool(b) => b.toString
case Json.Num(n) => n.toString
case Json.Str(s) => renderString(s)
case Json.Arr(vs) => vs.map(render).mkString("[", ",", "]")
case Json.Obj(vs) => vs.map { case (k, v) => s"${renderString(k)}:${render(v)}" }.mkString("{", ",", "}")
}
private def renderString(s: String): String = {
val sb = new StringBuilder
sb.append('"')
var i = 0
val len = s.length
while (i < len) {
s.charAt(i) match {
case '"' => sb.append("\\\"")
case '\\' => sb.append("\\\\")
case '\b' => sb.append("\\b")
case '\f' => sb.append("\\f")
case '\n' => sb.append("\\n")
case '\r' => sb.append("\\r")
case '\t' => sb.append("\\t")
case c =>
if (c < ' ') sb.append("\\u%04x" format c.toInt)
else sb.append(c)
}
i += 1
}
sb.append('"').toString
}
given SimpleFacade[Json] {
def jnull() = Json.Null
def jtrue() = Json.Bool(true)
def jfalse() = Json.Bool(false)
def jnum(s: CharSequence, decIndex: Int, expIndex: Int) = Json.Num(BigDecimal(s.toString))
def jstring(s: CharSequence) = Json.Str(s.toString)
def jarray(vs: List[Json]) = Json.Arr(vs)
def jobject(vs: Map[String, Json]) = Json.Obj(vs)
}

View File

@ -0,0 +1,174 @@
package forcomp
object Anagrams extends AnagramsInterface {
/** A word is simply a `String`. */
type Word = String
/** A sentence is a `List` of words. */
type Sentence = List[Word]
/** `Occurrences` is a `List` of pairs of characters and positive integers saying
* how often the character appears.
* This list is sorted alphabetically w.r.t. to the character in each pair.
* All characters in the occurrence list are lowercase.
*
* Any list of pairs of lowercase characters and their frequency which is not sorted
* is **not** an occurrence list.
*
* Note: If the frequency of some character is zero, then that character should not be
* in the list.
*/
type Occurrences = List[(Char, Int)]
/** The dictionary is simply a sequence of words.
* It is predefined and obtained as a sequence using the utility method `loadDictionary`.
*/
val dictionary: List[Word] = Dictionary.loadDictionary
/** Converts the word into its character occurrence list.
*
* Note: the uppercase and lowercase version of the character are treated as the
* same character, and are represented as a lowercase character in the occurrence list.
*
* Note: you must use `groupBy` to implement this method!
*/
def wordOccurrences(w: Word): Occurrences = w.toLowerCase.toSeq.groupBy(e => e).view.mapValues(t => t.length).toList.sorted
/** Converts a sentence into its character occurrence list. */
def sentenceOccurrences(s: Sentence): Occurrences = wordOccurrences(s.mkString)
/** The `dictionaryByOccurrences` is a `Map` from different occurrences to a sequence of all
* the words that have that occurrence count.
* This map serves as an easy way to obtain all the anagrams of a word given its occurrence list.
*
* For example, the word "eat" has the following character occurrence list:
*
* `List(('a', 1), ('e', 1), ('t', 1))`
*
* Incidentally, so do the words "ate" and "tea".
*
* This means that the `dictionaryByOccurrences` map will contain an entry:
*
* List(('a', 1), ('e', 1), ('t', 1)) -> Seq("ate", "eat", "tea")
*
*/
lazy val dictionaryByOccurrences: Map[Occurrences, List[Word]] = dictionary.groupBy(wordOccurrences)
/** Returns all the anagrams of a given word. */
def wordAnagrams(word: Word): List[Word] = dictionaryByOccurrences(wordOccurrences(word))
// val o : List[Occurrences] = occurrences.map( x => (for(i <- 1 until (x._2+1)) yield (x._1,i)).toList)
// o.foldRight(List[Occurrences](Nil))((x,y) => y ++ (for(i <- x; j <- y) yield (i :: j)))
/** Returns the list of all subsets of the occurrence list.
* This includes the occurrence itself, i.e. `List(('k', 1), ('o', 1))`
* is a subset of `List(('k', 1), ('o', 1))`.
* It also include the empty subset `List()`.
*
* Example: the subsets of the occurrence list `List(('a', 2), ('b', 2))` are:
*
* List(
* List(),
* List(('a', 1)),
* List(('a', 2)),
* List(('b', 1)),
* List(('a', 1), ('b', 1)),
* List(('a', 2), ('b', 1)),
* List(('b', 2)),
* List(('a', 1), ('b', 2)),
* List(('a', 2), ('b', 2))
* )
*
* Note that the order of the occurrence list subsets does not matter -- the subsets
* in the example above could have been displayed in some other order.
*/
def combinations(occurrences: Occurrences): List[Occurrences] =
occurrences.map( x => (for(i <- 1 until (x._2+1)) yield (x._1,i)).toList)
.foldRight(List[Occurrences](Nil))((x,y) =>
y ::: (for(i <- x; j <- y) yield (i :: j)))
/** Subtracts occurrence list `y` from occurrence list `x`.
*
* The precondition is that the occurrence list `y` is a subset of
* the occurrence list `x` -- any character appearing in `y` must
* appear in `x`, and its frequency in `y` must be smaller or equal
* than its frequency in `x`.
*
* Note: the resulting value is an occurrence - meaning it is sorted
* and has no zero-entries.
*/
def subtract(x: Occurrences, y: Occurrences): Occurrences =
y.foldLeft(Map(x: _*))((map, pair) => {
map.updated(pair._1, map.apply(pair._1) - pair._2)
}).filter(e => e._2 !=0 ).toList.sorted
/** Returns a list of all anagram sentences of the given sentence.
*
* An anagram of a sentence is formed by taking the occurrences of all the characters of
* all the words in the sentence, and producing all possible combinations of words with those characters,
* such that the words have to be from the dictionary.
*
* The number of words in the sentence and its anagrams does not have to correspond.
* For example, the sentence `List("I", "love", "you")` is an anagram of the sentence `List("You", "olive")`.
*
* Also, two sentences with the same words but in a different order are considered two different anagrams.
* For example, sentences `List("You", "olive")` and `List("olive", "you")` are different anagrams of
* `List("I", "love", "you")`.
*
* Here is a full example of a sentence `List("Yes", "man")` and its anagrams for our dictionary:
*
* List(
* List(en, as, my),
* List(en, my, as),
* List(man, yes),
* List(men, say),
* List(as, en, my),
* List(as, my, en),
* List(sane, my),
* List(Sean, my),
* List(my, en, as),
* List(my, as, en),
* List(my, sane),
* List(my, Sean),
* List(say, men),
* List(yes, man)
* )
*
* The different sentences do not have to be output in the order shown above - any order is fine as long as
* all the anagrams are there. Every returned word has to exist in the dictionary.
*
* Note: in case that the words of the sentence are in the dictionary, then the sentence is the anagram of itself,
* so it has to be returned in this list.
*
* Note: There is only one anagram of an empty sentence.
*/
def sentenceAnagrams(sentence: Sentence): List[Sentence] = {
def iter(occurrences: Occurrences): List[Sentence] = {
if (occurrences.isEmpty) List(Nil)
else for {
combination <- combinations( occurrences )
word <- dictionaryByOccurrences getOrElse (combination, Nil)
sentence <- iter( subtract(occurrences,wordOccurrences(word)) )
if !combination.isEmpty
} yield word :: sentence
}
iter( sentenceOccurrences(sentence) )
}
}
object Dictionary {
def loadDictionary: List[String] =
val wordstream = Option {
getClass.getResourceAsStream(List("forcomp", "linuxwords.txt").mkString("/", "/", ""))
} getOrElse(sys.error("Could not load word list, dictionary file not found"))
try
val s = scala.io.Source.fromInputStream(wordstream)
s.getLines.toList
catch
case e: Exception =>
println("Could not load word list: " + e)
throw e
finally
wordstream.close()
}

View File

@ -0,0 +1,15 @@
package forcomp
/**
* The interface used by the grading infrastructure. Do not change signatures
* or your submission will fail with a NoSuchMethodError.
*/
trait AnagramsInterface {
def wordOccurrences(w: String): List[(Char, Int)]
def sentenceOccurrences(s: List[String]): List[(Char, Int)]
def dictionaryByOccurrences: Map[List[(Char, Int)], List[String]]
def wordAnagrams(word: String): List[String]
def combinations(occurrences: List[(Char, Int)]): List[List[(Char, Int)]]
def subtract(x: List[(Char, Int)], y: List[(Char, Int)]): List[(Char, Int)]
def sentenceAnagrams(sentence: List[String]): List[List[String]]
}

View File

@ -1,115 +0,0 @@
package codecs
import org.scalacheck
import org.scalacheck.{ Gen, Prop }
import org.scalacheck.Prop.propBoolean
import org.junit.{ Assert, Test }
import scala.reflect.ClassTag
class CodecsSuite extends GivenEncoders, GivenDecoders, PersonCodecs, ContactsCodecs, TestEncoders, TestDecoders {
def checkProperty(prop: Prop): Unit = {
val result = scalacheck.Test.check(scalacheck.Test.Parameters.default, prop)
def fail(labels: Set[String], fallback: String): Nothing =
if labels.isEmpty then throw new AssertionError(fallback)
else throw new AssertionError(labels.mkString(". "))
result.status match {
case scalacheck.Test.Passed | _: scalacheck.Test.Proved => ()
case scalacheck.Test.Failed(_, labels) => fail(labels, "A property failed.")
case scalacheck.Test.PropException(_, e, labels) => fail(labels, s"An exception was thrown during property evaluation: $e.")
case scalacheck.Test.Exhausted => fail(Set.empty, "Unable to generate data.")
}
}
/**
* Check that a value of an arbitrary type `A` can be encoded and then successfully
* decoded with the given pair of encoder and decoder.
*/
def encodeAndThenDecodeProp[A](a: A)(given encA: Encoder[A], decA: Decoder[A]): Prop = {
val maybeDecoded = decA.decode(encA.encode(a))
maybeDecoded.contains(a) :| s"Encoded value '$a' was not successfully decoded. Got '$maybeDecoded'."
}
@Test def `it is possible to encode and decode the 'Unit' value (0pts)`(): Unit = {
checkProperty(Prop.forAll((unit: Unit) => encodeAndThenDecodeProp(unit)))
}
@Test def `it is possible to encode and decode 'Int' values (1pt)`(): Unit = {
checkProperty(Prop.forAll((x: Int) => encodeAndThenDecodeProp(x)))
}
@Test def `the 'Int' decoder should reject invalid 'Int' values (2pts)`(): Unit = {
val decoded = summon[Decoder[Int]].decode(Json.Num(4.2))
assert(decoded.isEmpty, "decoding 4.2 as an integer value should fail")
}
@Test def `a 'String' value should be encoded as a JSON string (1pt)`(): Unit = {
assert(summon[Encoder[String]].encode("foo") == Json.Str("foo"))
}
@Test def `it is possible to encode and decode 'String' values (1pt)`(): Unit = {
checkProperty(Prop.forAll((s: String) => encodeAndThenDecodeProp(s)))
}
@Test def `a 'Boolean' value should be encoded as a JSON boolean (1pt)`(): Unit = {
val encoder = summon[Encoder[Boolean]]
assert(encoder.encode(true) == Json.Bool(true))
assert(encoder.encode(false) == Json.Bool(false))
}
@Test def `it is possible to encode and decode 'Boolean' values (1pt)`(): Unit = {
checkProperty(Prop.forAll((b: Boolean) => encodeAndThenDecodeProp(b)))
}
@Test def `a 'List[A]' value should be encoded as a JSON array (0pts)`(): Unit = {
val xs = 1 :: 2 :: Nil
val encoder = summon[Encoder[List[Int]]]
assert(encoder.encode(xs) == Json.Arr(List(Json.Num(1), Json.Num(2))))
}
@Test def `it is possible to encode and decode lists (5pts)`(): Unit = {
checkProperty(Prop.forAll((xs: List[Int]) => encodeAndThenDecodeProp(xs)))
}
@Test def `a 'Person' value should be encoded as a JSON object (1pt)`(): Unit = {
val person = Person("Alice", 42)
val json = Json.Obj(Map("name" -> Json.Str("Alice"), "age" -> Json.Num(42)))
val encoder = summon[Encoder[Person]]
assert(encoder.encode(person) == json)
}
@Test def `it is possible to encode and decode people (4pts)`(): Unit = {
checkProperty(Prop.forAll((s: String, x: Int) => encodeAndThenDecodeProp(Person(s, x))))
}
@Test def `a 'Contacts' value should be encoded as a JSON object (1pt)`(): Unit = {
val contacts = Contacts(List(Person("Alice", 42)))
val json = Json.Obj(Map("people" ->
Json.Arr(List(Json.Obj(Map("name" -> Json.Str("Alice"), "age" -> Json.Num(42)))))
))
val encoder = summon[Encoder[Contacts]]
assert(encoder.encode(contacts) == json)
}
@Test def `it is possible to encode and decode contacts (4pts)`(): Unit = {
val peopleGenerator = Gen.listOf(Gen.resultOf((s: String, x: Int) => Person(s, x)))
checkProperty(Prop.forAll(peopleGenerator)(people => encodeAndThenDecodeProp(Contacts(people))))
}
}
trait TestEncoders extends EncoderFallbackInstance
trait EncoderFallbackInstance {
given [A](given ct: ClassTag[A]): Encoder[A] = throw new AssertionError(s"No given instance of `Encoder[${ct.runtimeClass.getSimpleName}]`")
}
trait TestDecoders extends DecoderFallbackInstance
trait DecoderFallbackInstance {
given [A](given ct: ClassTag[A]): Decoder[A] = throw new AssertionError(s"No given instance of `Decoder[${ct.runtimeClass.getSimpleName}]")
}

View File

@ -0,0 +1,91 @@
package forcomp
import org.junit._
import org.junit.Assert.assertEquals
class AnagramsSuite {
import Anagrams._
@Test def `wordOccurrences: abcd (3pts)`: Unit =
assertEquals(List(('a', 1), ('b', 1), ('c', 1), ('d', 1)), wordOccurrences("abcd"))
@Test def `wordOccurrences: Robert (3pts)`: Unit =
assertEquals(List(('b', 1), ('e', 1), ('o', 1), ('r', 2), ('t', 1)), wordOccurrences("Robert"))
@Test def `sentenceOccurrences: abcd e (5pts)`: Unit =
assertEquals(List(('a', 1), ('b', 1), ('c', 1), ('d', 1), ('e', 1)), sentenceOccurrences(List("abcd", "e")))
@Test def `dictionaryByOccurrences.get: eat (10pts)`: Unit =
assertEquals(Some(Set("ate", "eat", "tea")), dictionaryByOccurrences.get(List(('a', 1), ('e', 1), ('t', 1))).map(_.toSet))
@Test def `wordAnagrams married (2pts)`: Unit =
assertEquals(Set("married", "admirer"), wordAnagrams("married").toSet)
@Test def `wordAnagrams player (2pts)`: Unit =
assertEquals(Set("parley", "pearly", "player", "replay"), wordAnagrams("player").toSet)
@Test def `subtract: lard - r (10pts)`: Unit =
val lard = List(('a', 1), ('d', 1), ('l', 1), ('r', 1))
val r = List(('r', 1))
val lad = List(('a', 1), ('d', 1), ('l', 1))
assertEquals(lad, subtract(lard, r))
@Test def `combinations: [] (8pts)`: Unit =
assertEquals(List(Nil), combinations(Nil))
@Test def `combinations: abba (8pts)`: Unit =
val abba = List(('a', 2), ('b', 2))
val abbacomb = List(
List(),
List(('a', 1)),
List(('a', 2)),
List(('b', 1)),
List(('a', 1), ('b', 1)),
List(('a', 2), ('b', 1)),
List(('b', 2)),
List(('a', 1), ('b', 2)),
List(('a', 2), ('b', 2))
)
assertEquals(abbacomb.toSet, combinations(abba).toSet)
@Test def `sentence anagrams: [] (10pts)`: Unit =
val sentence = List()
assertEquals(List(Nil), sentenceAnagrams(sentence))
@Test def `sentence anagrams: Linux rulez (10pts)`: Unit =
val sentence = List("Linux", "rulez")
val anas = List(
List("Rex", "Lin", "Zulu"),
List("nil", "Zulu", "Rex"),
List("Rex", "nil", "Zulu"),
List("Zulu", "Rex", "Lin"),
List("null", "Uzi", "Rex"),
List("Rex", "Zulu", "Lin"),
List("Uzi", "null", "Rex"),
List("Rex", "null", "Uzi"),
List("null", "Rex", "Uzi"),
List("Lin", "Rex", "Zulu"),
List("nil", "Rex", "Zulu"),
List("Rex", "Uzi", "null"),
List("Rex", "Zulu", "nil"),
List("Zulu", "Rex", "nil"),
List("Zulu", "Lin", "Rex"),
List("Lin", "Zulu", "Rex"),
List("Uzi", "Rex", "null"),
List("Zulu", "nil", "Rex"),
List("rulez", "Linux"),
List("Linux", "rulez")
)
assertEquals(anas.toSet, sentenceAnagrams(sentence).toSet)
@Rule def individualTestTimeout = new org.junit.rules.Timeout(10 * 1000)
}