Compare commits

...

No commits in common. "actorbintree" and "kmeans" have entirely different histories.

14 changed files with 677 additions and 337 deletions

View File

@ -25,7 +25,7 @@ grade:
tags:
- cs206
image:
name: smarter3/moocs:reactive-actorbintree-2020-04-15
name: smarter3/moocs:parprog1-kmeans-2020-02-24-2
entrypoint: [""]
allow_failure: true
before_script:

View File

@ -1,4 +1,9 @@
// Student tasks (i.e. submit, packageSubmission)
enablePlugins(StudentTasks)
courseraId := ch.epfl.lamp.CourseraId(
key = "UJmFEtoIEeWJwRKcpT8ChQ",
itemId = "Olt0g",
premiumItemId = Some("akLxD"),
partId = "mz8iL"
)

View File

@ -1,24 +1,13 @@
course := "reactive"
assignment := "actorbintree"
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
parallelExecution in Test := false
val akkaVersion = "2.6.0"
course := "parprog1"
assignment := "kmeans"
scalaVersion := "0.23.0-bin-20200211-5b006fb-NIGHTLY"
scalacOptions ++= Seq(
"-feature",
"-deprecation",
"-encoding", "UTF-8",
"-unchecked",
"-language:implicitConversions"
)
scalacOptions ++= Seq("-language:implicitConversions", "-deprecation")
libraryDependencies ++= Seq(
"com.typesafe.akka" %% "akka-actor" % akkaVersion,
"com.typesafe.akka" %% "akka-testkit" % akkaVersion % Test,
"com.novocode" % "junit-interface" % "0.11" % Test
"com.storm-enroute" %% "scalameter-core" % "0.19",
"org.scala-lang.modules" %% "scala-parallel-collections" % "0.2.0",
"com.novocode" % "junit-interface" % "0.11" % Test
).map(_.withDottyCompat(scalaVersion.value))
testSuite := "actorbintree.BinaryTreeSuite"
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
testSuite := "kmeans.KMeansSuite"

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 322 KiB

View File

@ -1,189 +0,0 @@
/**
* Copyright (C) 2009-2013 Typesafe Inc. <http://www.typesafe.com>
*/
package actorbintree
import akka.actor._
import scala.collection.immutable.Queue
object BinaryTreeSet {
trait Operation {
def requester: ActorRef
def id: Int
def elem: Int
}
trait OperationReply {
def id: Int
}
/** Request with identifier `id` to insert an element `elem` into the tree.
* The actor at reference `requester` should be notified when this operation
* is completed.
*/
case class Insert(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request with identifier `id` to check whether an element `elem` is present
* in the tree. The actor at reference `requester` should be notified when
* this operation is completed.
*/
case class Contains(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request with identifier `id` to remove the element `elem` from the tree.
* The actor at reference `requester` should be notified when this operation
* is completed.
*/
case class Remove(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request to perform garbage collection */
case object GC
/** Holds the answer to the Contains request with identifier `id`.
* `result` is true if and only if the element is present in the tree.
*/
case class ContainsResult(id: Int, result: Boolean) extends OperationReply
/** Message to signal successful completion of an insert or remove operation. */
case class OperationFinished(id: Int) extends OperationReply
}
class BinaryTreeSet extends Actor {
import BinaryTreeSet._
import BinaryTreeNode._
def createRoot: ActorRef = context.actorOf(BinaryTreeNode.props(0, initiallyRemoved = true))
var root = createRoot
// optional
var pendingQueue = Queue.empty[Operation]
// optional
def receive = normal
// optional
/** Accepts `Operation` and `GC` messages. */
val normal: Receive = {
case op:Operation => root ! op
case GC => {
val newRoot = createRoot;
root ! CopyTo(newRoot)
context.become(garbageCollecting(newRoot))
}
}
// optional
/** Handles messages while garbage collection is performed.
* `newRoot` is the root of the new binary tree where we want to copy
* all non-removed elements into.
*/
def garbageCollecting(newRoot: ActorRef): Receive = {
case op:Operation => pendingQueue = pendingQueue.enqueue(op)
case CopyFinished =>
pendingQueue.foreach(newRoot ! _) //foreach preserves order of a queue (same as dequeueing)
root ! PoisonPill //Will also stop all of its children
pendingQueue = Queue.empty
root = newRoot;
context.become(normal)
//Ignore GC messages here
}
}
object BinaryTreeNode {
trait Position
case object Left extends Position
case object Right extends Position
case class CopyTo(treeNode: ActorRef)
case object CopyFinished
def props(elem: Int, initiallyRemoved: Boolean) = Props(classOf[BinaryTreeNode], elem, initiallyRemoved)
}
class BinaryTreeNode(val elem: Int, initiallyRemoved: Boolean) extends Actor {
import BinaryTreeNode._
import BinaryTreeSet._
var subtrees = Map[Position, ActorRef]()
var removed = initiallyRemoved
// optional
def receive = normal
def goDownTo(elem : Int) : Position = if(elem < this.elem) Left else Right
// optional
/** Handles `Operation` messages and `CopyTo` requests. */
val normal: Receive = {
case Insert (requester, id, elem) =>
if(elem == this.elem && !removed){
requester ! OperationFinished(id)
}else{
val nextPos = goDownTo(elem)
subtrees get nextPos match{
case Some(node) => node ! Insert(requester, id, elem)
case None => {
val newActorSubtree = (nextPos, context.actorOf(BinaryTreeNode.props(elem, false)))
subtrees = subtrees + newActorSubtree
requester ! OperationFinished(id);
}
}
}
case Contains(requester, id, elem) =>
if(elem == this.elem && !removed)
requester ! ContainsResult(id, true)
else{
//Need to search subtrees
subtrees get goDownTo(elem) match{
case Some(node) => node ! Contains(requester, id, elem)
case None => requester ! ContainsResult(id, false)
}
}
case Remove (requester, id, elem) =>
if(elem == this.elem && !removed){
removed = true
requester ! OperationFinished(id)
}else{
subtrees get goDownTo(elem) match{
case Some(node) => node ! Remove(requester, id, elem)
case None => requester ! OperationFinished(id) // (elem isn't in the tree)
}
}
case CopyTo(newRoot) =>
//We are already done, nothing to do
if(removed && subtrees.isEmpty) context.parent ! CopyFinished
else{
if(!removed) newRoot ! Insert(self, elem, elem)
subtrees.values foreach(_ ! CopyTo(newRoot)) //Copy subtrees elems
//val insertConfirmed = if(removed) true else false, hence we can simply pass removed
context.become(copying(subtrees.values.toSet, removed))
}
}
// optional
/** `expected` is the set of ActorRefs whose replies we are waiting for,
* `insertConfirmed` tracks whether the copy of this node to the new tree has been confirmed.
*/
def copying(expected: Set[ActorRef], insertConfirmed: Boolean): Receive = {
//To catch the insert of this node into the new tree beeing finished
case OperationFinished(_) => {
if(expected.isEmpty) context.parent ! CopyFinished
else context.become(copying(expected, true))
}
case CopyFinished => {
val newExp = expected-sender
if(insertConfirmed && newExp.isEmpty){
context.parent ! CopyFinished
}else{
context.become(copying(newExp, insertConfirmed))
}
}
}
}

View File

@ -0,0 +1,147 @@
package kmeans
import scala.annotation.tailrec
import scala.collection.{Map, Seq, mutable}
import scala.collection.parallel.CollectionConverters._
import scala.collection.parallel.{ForkJoinTaskSupport, ParMap, ParSeq}
import scala.util.Random
import org.scalameter._
import java.util.concurrent.ForkJoinPool
class KMeans extends KMeansInterface {
def generatePoints(k: Int, num: Int): ParSeq[Point] = {
val randx = new Random(1)
val randy = new Random(3)
val randz = new Random(5)
(0 until num)
.map({ i =>
val x = ((i + 1) % k) * 1.0 / k + randx.nextDouble() * 0.5
val y = ((i + 5) % k) * 1.0 / k + randy.nextDouble() * 0.5
val z = ((i + 7) % k) * 1.0 / k + randz.nextDouble() * 0.5
new Point(x, y, z)
}).to(mutable.ArrayBuffer).par
}
def initializeMeans(k: Int, points: ParSeq[Point]): ParSeq[Point] = {
val rand = new Random(7)
(0 until k).map(_ => points(rand.nextInt(points.length))).to(mutable.ArrayBuffer).par
}
def findClosest(p: Point, means: IterableOnce[Point]): Point = {
val it = means.iterator
assert(it.nonEmpty)
var closest = it.next()
var minDistance = p.squareDistance(closest)
while (it.hasNext) {
val point = it.next()
val distance = p.squareDistance(point)
if (distance < minDistance) {
minDistance = distance
closest = point
}
}
closest
}
def classify(points: ParSeq[Point], means: ParSeq[Point]): ParMap[Point, ParSeq[Point]] = {
val pointsMeanMap = points.par.groupBy(findClosest(_, means))
// So iterate over means get (empty) list and return map
means.par.map(mean => mean -> pointsMeanMap.getOrElse(mean, ParSeq())).toMap
}
def findAverage(oldMean: Point, points: ParSeq[Point]): Point = if (points.isEmpty) oldMean else {
var x = 0.0
var y = 0.0
var z = 0.0
points.seq.foreach { p =>
x += p.x
y += p.y
z += p.z
}
new Point(x / points.length, y / points.length, z / points.length)
}
def update(classified: ParMap[Point, ParSeq[Point]], oldMeans: ParSeq[Point]): ParSeq[Point] = {
oldMeans.par.map(oldMean => findAverage(oldMean, classified(oldMean)))
}
def converged(eta: Double, oldMeans: ParSeq[Point], newMeans: ParSeq[Point]): Boolean = {
(oldMeans zip newMeans).forall{
case (oldMean, newMean) => oldMean.squareDistance(newMean) <= eta
}
}
@tailrec
final def kMeans(points: ParSeq[Point], means: ParSeq[Point], eta: Double): ParSeq[Point] = {
val classified = classify(points, means)
val newMeans = update(classified, means)
if (!converged(eta, means, newMeans)) kMeans(points, newMeans, eta) else newMeans
}
}
/** Describes one point in three-dimensional space.
*
* Note: deliberately uses reference equality.
*/
class Point(val x: Double, val y: Double, val z: Double) {
private def square(v: Double): Double = v * v
def squareDistance(that: Point): Double = {
square(that.x - x) + square(that.y - y) + square(that.z - z)
}
private def round(v: Double): Double = (v * 100).toInt / 100.0
override def toString = s"(${round(x)}, ${round(y)}, ${round(z)})"
}
object KMeansRunner {
val standardConfig = config(
Key.exec.minWarmupRuns -> 20,
Key.exec.maxWarmupRuns -> 40,
Key.exec.benchRuns -> 25,
Key.verbose -> false
) withWarmer(new Warmer.Default)
def main(args: Array[String]): Unit = {
val kMeans = new KMeans()
val numPoints = 500000
val eta = 0.01
val k = 32
val points = kMeans.generatePoints(k, numPoints)
val means = kMeans.initializeMeans(k, points)
val seqtime = {
val parTasksupport = points.tasksupport
val seqPool = new ForkJoinPool(1)
val seqTasksupport = new ForkJoinTaskSupport(seqPool)
try {
points.tasksupport = seqTasksupport
means.tasksupport = seqTasksupport
standardConfig measure {
kMeans.kMeans(points, means, eta)
}
}
finally {
points.tasksupport = parTasksupport
means.tasksupport = parTasksupport
seqPool.shutdown()
}
}
val partime = standardConfig measure {
kMeans.kMeans(points, means, eta)
}
println(s"sequential time: $seqtime")
println(s"parallel time: $partime")
println(s"speedup: ${seqtime.value / partime.value}")
}
// Workaround Dotty's handling of the existential type KeyValue
implicit def keyValueCoerce[T](kv: (Key[T], T)): KeyValue = {
kv.asInstanceOf[KeyValue]
}
}

View File

@ -0,0 +1,15 @@
package kmeans
import scala.collection.{Map, Seq}
import scala.collection.parallel.{ParMap, ParSeq}
/**
* The interface used by the grading infrastructure. Do not change signatures
* or your submission will fail with a NoSuchMethodError.
*/
trait KMeansInterface {
def classify(points: ParSeq[Point], means: ParSeq[Point]): ParMap[Point, ParSeq[Point]]
def update(classified: ParMap[Point, ParSeq[Point]], oldMeans: ParSeq[Point]): ParSeq[Point]
def converged(eta: Double, oldMeans: ParSeq[Point], newMeans: ParSeq[Point]): Boolean
def kMeans(points: ParSeq[Point], means: ParSeq[Point], eta: Double): ParSeq[Point]
}

View File

@ -0,0 +1,117 @@
package kmeans
package fun
import scala.collection.Seq
import scala.collection.parallel.ParSeq
import scala.collection.parallel.CollectionConverters._
abstract sealed trait InitialSelectionStrategy
case object RandomSampling extends InitialSelectionStrategy
case object UniformSampling extends InitialSelectionStrategy
case object UniformChoice extends InitialSelectionStrategy
abstract sealed trait ConvergenceStrategy
case class ConvergedWhenSNRAbove(x: Double) extends ConvergenceStrategy
case class ConvergedAfterNSteps(n: Int) extends ConvergenceStrategy
case class ConvergedAfterMeansAreStill(eta: Double) extends ConvergenceStrategy
class IndexedColorFilter(initialImage: Img,
colorCount: Int,
initStrategy: InitialSelectionStrategy,
convStrategy: ConvergenceStrategy) extends KMeans {
private var steps = 0
val points = imageToPoints(initialImage).par
val means = initializeIndex(colorCount, points).par
/* The work is done here: */
private val newMeans = kMeans(points, means, 0.01)
/* And these are the results exposed */
def getStatus() = s"Converged after $steps steps."
def getResult() = indexedImage(initialImage, newMeans)
private def imageToPoints(img: Img): Seq[Point] =
for (x <- 0 until img.width; y <- 0 until img.height) yield {
val rgba = img(x, y)
new Point(red(rgba), green(rgba), blue(rgba))
}
private def indexedImage(img: Img, means: ParSeq[Point]) = {
val dst = new Img(img.width, img.height)
val pts = collection.mutable.Set[Point]()
for (x <- 0 until img.width; y <- 0 until img.height) yield {
val v = img(x, y)
var point = new Point(red(v), green(v), blue(v))
point = findClosest(point, means)
pts += point
dst(x, y) = rgba(point.x, point.y, point.z, 1d)
}
dst
}
private def initializeIndex(numColors: Int, points: ParSeq[Point]): Seq[Point] = {
val initialPoints: Seq[Point] =
initStrategy match {
case RandomSampling =>
val d: Int = points.size / numColors
(0 until numColors) map (idx => points(d * idx))
case UniformSampling =>
val sep: Int = 32
(for (r <- 0 until 255 by sep; g <- 0 until 255 by sep; b <- 0 until 255 by sep) yield {
def inside(p: Point): Boolean =
(p.x >= (r.toDouble / 255)) &&
(p.x <= ((r.toDouble + sep) / 255)) &&
(p.y >= (g.toDouble / 255)) &&
(p.y <= ((g.toDouble + sep) / 255)) &&
(p.z >= (b.toDouble / 255)) &&
(p.z <= ((b.toDouble + sep) / 255))
val pts = points.filter(inside(_))
val cnt = pts.size * 3 * numColors / points.size
if (cnt >= 1) {
val d = pts.size / cnt
(0 until cnt) map (idx => pts(d * idx))
} else
Seq()
}).flatten
case UniformChoice =>
val d: Int = math.max(1, (256 / math.cbrt(numColors.toDouble).ceil).toInt)
for (r <- 0 until 256 by d; g <- 0 until 256 by d; b <- 0 until 256 by d) yield
new Point(r.toDouble / 256,g.toDouble / 256, b.toDouble / 256)
}
val d2 = initialPoints.size.toDouble / numColors
(0 until numColors) map (idx => initialPoints((idx * d2).toInt))
}
private def computeSNR(points: ParSeq[Point], means: ParSeq[Point]): Double = {
var sound = 0.0
var noise = 0.0
for (point <- points) {
import math.{pow, sqrt}
val closest = findClosest(point, means)
sound += sqrt(pow(point.x, 2) + pow(point.y, 2) + pow(point.z, 2))
noise += sqrt(pow(point.x - closest.x, 2) + pow(point.y - closest.y, 2) + pow(point.z - closest.z, 2))
}
sound/noise
}
override def converged(eta: Double, oldMeans: ParSeq[Point], newMeans: ParSeq[Point]): Boolean = {
steps += 1
convStrategy match {
case ConvergedAfterNSteps(n) =>
steps >= n
case ConvergedAfterMeansAreStill(eta) =>
super.converged(eta, oldMeans, newMeans)
case ConvergedWhenSNRAbove(snr_desired) =>
val snr_computed = computeSNR(points.par, newMeans)
snr_computed >= snr_desired
}
}
}

View File

@ -0,0 +1,95 @@
package kmeans
package fun
import java.awt._
import java.awt.event._
import java.awt.image._
import java.io._
import javax.imageio._
import javax.swing._
import javax.swing.event._
class PhotoCanvas extends JComponent {
var imagePath: Option[String] = None
var image = loadEPFLImage()
val timerDelay = 100
val timer =
new Timer(timerDelay, new ActionListener() {
def actionPerformed(e: ActionEvent): Unit = repaint()
})
override def getPreferredSize = {
new Dimension(image.width, image.height)
}
private def loadEPFLImage(): Img = {
val stream = this.getClass.getResourceAsStream("/kmeans/epfl-view.jpg")
try {
loadImage(stream)
} finally {
stream.close()
}
}
private def loadFileImage(path: String): Img = {
val stream = new FileInputStream(path)
try {
loadImage(stream)
} finally {
stream.close()
}
}
private def loadImage(inputStream: InputStream): Img = {
val bufferedImage = ImageIO.read(inputStream)
val width = bufferedImage.getWidth
val height = bufferedImage.getHeight
val img = new Img(width, height)
for (x <- 0 until width; y <- 0 until height)
img(x, y) = bufferedImage.getRGB(x, y)
img
}
def reload(): Unit = {
image = imagePath match {
case Some(path) => loadFileImage(path)
case None => loadEPFLImage()
}
repaint()
}
def loadFile(path: String): Unit = {
imagePath = Some(path)
reload()
}
def saveFile(path: String): Unit = {
reload()
val stream = new FileOutputStream(path)
val bufferedImage = new BufferedImage(image.width, image.height, BufferedImage.TYPE_INT_ARGB)
for (x <- 0 until image.width; y <- 0 until image.height) bufferedImage.setRGB(x, y, image(x, y))
ImageIO.write(bufferedImage, "png", stream)
}
def applyIndexedColors(colorCount: Int, initStrategy: InitialSelectionStrategy, convStrategy: ConvergenceStrategy): String = {
val filter = new IndexedColorFilter(image, colorCount, initStrategy, convStrategy)
image = filter.getResult()
repaint()
filter.getStatus()
}
override def paintComponent(gcan: Graphics) = {
super.paintComponent(gcan)
val width = image.width
val height = image.height
val bufferedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB)
for (x <- 0 until width; y <- 0 until height) bufferedImage.setRGB(x, y, image(x, y))
gcan.drawImage(bufferedImage, 0, 0, null)
}
}

View File

@ -0,0 +1,218 @@
package kmeans
package fun
import java.awt._
import java.awt.event._
import javax.swing._
import javax.swing.event._
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
import org.scalameter._
object ScalaShop {
class ScalaShopFrame extends JFrame("ScalaShop\u2122") {
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
setSize(800, 500)
setLayout(new BorderLayout)
val rightpanel = new JPanel
rightpanel.setBorder(BorderFactory.createEtchedBorder(border.EtchedBorder.LOWERED))
rightpanel.setLayout(new BorderLayout)
add(rightpanel, BorderLayout.EAST)
val allControls = new JPanel
allControls.setLayout(new BoxLayout(allControls, BoxLayout.Y_AXIS))
rightpanel.add(allControls, BorderLayout.NORTH)
// Color count selection
val colorControls = new JPanel
colorControls.setLayout(new GridLayout(0, 2))
allControls.add(colorControls)
val colorCountLabel = new JLabel("Colors")
colorControls.add(colorCountLabel)
val colorCountSpinner = new JSpinner(new SpinnerNumberModel(32, 16, 512, 16))
colorControls.add(colorCountSpinner)
// Initial selection
val initSelectionControls = new JPanel
initSelectionControls.setLayout(new GridLayout(0, 1))
allControls.add(initSelectionControls)
val initialSelectionGroup = new ButtonGroup()
val initSelectionLabel = new JLabel("Initial Color Selection:")
initSelectionControls.add(initSelectionLabel)
val uniformSamplingButton = new JRadioButton("Uniform Sampling")
uniformSamplingButton.setSelected(true);
initSelectionControls.add(uniformSamplingButton)
val randomSamplingButton = new JRadioButton("Random Sampling")
initSelectionControls.add(randomSamplingButton)
val uniformChoiceButton = new JRadioButton("Uniform Choice")
initSelectionControls.add(uniformChoiceButton)
initialSelectionGroup.add(randomSamplingButton)
initialSelectionGroup.add(uniformSamplingButton)
initialSelectionGroup.add(uniformChoiceButton)
// Initial means selection
val convergenceControls = new JPanel
convergenceControls.setLayout(new BoxLayout(convergenceControls, BoxLayout.Y_AXIS))
allControls.add(convergenceControls)
val convergenceGroup = new ButtonGroup()
val convergenceLabel = new JLabel("Convergence criteria:")
initSelectionControls.add(convergenceLabel)
val criteriaControls = new JPanel
criteriaControls.setLayout(new GridLayout(0, 2))
convergenceControls.add(criteriaControls)
val stepConvergenceButton = new JRadioButton("Steps")
criteriaControls.add(stepConvergenceButton)
val stepCountSpinner = new JSpinner(new SpinnerNumberModel(5, 1, 50, 1))
criteriaControls.add(stepCountSpinner)
val etaConvergenceButton = new JRadioButton("Eta")
etaConvergenceButton.setSelected(true);
criteriaControls.add(etaConvergenceButton)
val etaCountSpinner = new JSpinner(new SpinnerNumberModel(0.001, 0.00001, 0.01, 0.00001))
criteriaControls.add(etaCountSpinner)
val snrConvergenceButton = new JRadioButton("Sound-to-noise")
criteriaControls.add(snrConvergenceButton)
val snrCountSpinner = new JSpinner(new SpinnerNumberModel(40, 10, 80, 1))
criteriaControls.add(snrCountSpinner)
convergenceGroup.add(stepConvergenceButton)
convergenceGroup.add(etaConvergenceButton)
convergenceGroup.add(snrConvergenceButton)
// Action Buttons
val actionControls = new JPanel
actionControls.setLayout(new GridLayout(0, 2))
allControls.add(actionControls)
val stepbutton = new JButton("Apply filter")
stepbutton.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
var status = ""
val time = measure {
status = canvas.applyIndexedColors(getColorCount, getInitialSelectionStrategy, getConvergenceStragegy)
}
updateInformationBox(status, time.value)
}
})
actionControls.add(stepbutton)
val clearButton = new JButton("Reload")
clearButton.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
canvas.reload()
}
})
actionControls.add(clearButton)
val info = new JTextArea(" ")
info.setBorder(BorderFactory.createLoweredBevelBorder)
rightpanel.add(info, BorderLayout.SOUTH)
val mainMenuBar = new JMenuBar()
val fileMenu = new JMenu("File")
val openMenuItem = new JMenuItem("Open...")
openMenuItem.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
val fc = new JFileChooser()
if (fc.showOpenDialog(ScalaShopFrame.this) == JFileChooser.APPROVE_OPTION) {
canvas.loadFile(fc.getSelectedFile.getPath)
}
}
})
fileMenu.add(openMenuItem)
val saveMenuItem = new JMenuItem("Save...")
saveMenuItem.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
val fc = new JFileChooser("epfl-view.png")
if (fc.showSaveDialog(ScalaShopFrame.this) == JFileChooser.APPROVE_OPTION) {
canvas.saveFile(fc.getSelectedFile.getPath)
}
}
})
fileMenu.add(saveMenuItem)
val exitMenuItem = new JMenuItem("Exit")
exitMenuItem.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
sys.exit(0)
}
})
fileMenu.add(exitMenuItem)
mainMenuBar.add(fileMenu)
val helpMenu = new JMenu("Help")
val aboutMenuItem = new JMenuItem("About")
aboutMenuItem.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
JOptionPane.showMessageDialog(null, "ScalaShop, the ultimate image manipulation tool\nBrought to you by EPFL, 2015")
}
})
helpMenu.add(aboutMenuItem)
mainMenuBar.add(helpMenu)
setJMenuBar(mainMenuBar)
val canvas = new PhotoCanvas
val scrollPane = new JScrollPane(canvas)
add(scrollPane, BorderLayout.CENTER)
setVisible(true)
def updateInformationBox(status: String, time: Double): Unit = {
info.setText(s"$status\nTime: ${time.toInt} ms.")
}
def getColorCount: Int =
colorCountSpinner.getValue.asInstanceOf[Int]
def getInitialSelectionStrategy: InitialSelectionStrategy =
if (randomSamplingButton.isSelected())
RandomSampling
else if (uniformSamplingButton.isSelected())
UniformSampling
else
UniformChoice
def getConvergenceStragegy: ConvergenceStrategy =
if (stepConvergenceButton.isSelected())
ConvergedAfterNSteps(stepCountSpinner.getValue.asInstanceOf[Int])
else if (etaConvergenceButton.isSelected())
ConvergedAfterMeansAreStill(etaCountSpinner.getValue.asInstanceOf[Double])
else
ConvergedWhenSNRAbove(snrCountSpinner.getValue.asInstanceOf[Int])
}
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName())
} catch {
case _: Exception => println("Cannot set look and feel, using the default one.")
}
val frame = new ScalaShopFrame
def main(args: Array[String]): Unit = {
frame.repaint()
}
}

View File

@ -0,0 +1,41 @@
package kmeans
package object fun {
/** The value of every pixel is represented as a 32 bit integer. */
type RGBA = Int
/** Returns the alpha component. */
def alpha(c: RGBA): Double = ((0xff000000 & c) >>> 24).toDouble / 256
/** Returns the red component. */
def red(c: RGBA): Double = ((0x00ff0000 & c) >>> 16).toDouble / 256
/** Returns the green component. */
def green(c: RGBA): Double = ((0x0000ff00 & c) >>> 8).toDouble / 256
/** Returns the blue component. */
def blue(c: RGBA): Double = ((0x000000ff & c) >>> 0).toDouble / 256
/** Used to create an RGBA value from separate components. */
def rgba(r: Double, g: Double, b: Double, a: Double): RGBA = {
(clamp((a * 256).toInt, 0, 255) << 24) |
(clamp((r * 256).toInt, 0, 255) << 16) |
(clamp((g * 256).toInt, 0, 255) << 8) |
(clamp((b * 256).toInt, 0, 255) << 0)
}
/** Restricts the integer into the specified range. */
def clamp(v: Int, min: Int, max: Int): Int = {
if (v < min) min
else if (v > max) max
else v
}
/** Image is a two-dimensional matrix of pixel values. */
class Img(val width: Int, val height: Int, private val data: Array[RGBA]) {
def this(w: Int, h: Int) = this(w, h, new Array(w * h))
def apply(x: Int, y: Int): RGBA = data(y * width + x)
def update(x: Int, y: Int, c: RGBA): Unit = data(y * width + x) = c
}
}

View File

@ -1,126 +0,0 @@
/**
* Copyright (C) 2009-2015 Typesafe Inc. <http://www.typesafe.com>
*/
package actorbintree
import akka.actor.{ActorRef, ActorSystem, Props, actorRef2Scala, scala2ActorRef}
import akka.testkit.{ImplicitSender, TestKit, TestProbe}
import org.junit.Test
import org.junit.Assert._
import scala.util.Random
import scala.concurrent.duration._
class BinaryTreeSuite extends TestKit(ActorSystem("BinaryTreeSuite")) with ImplicitSender {
import actorbintree.BinaryTreeSet._
def receiveN(requester: TestProbe, ops: Seq[Operation], expectedReplies: Seq[OperationReply]): Unit =
requester.within(5.seconds) {
val repliesUnsorted = for (i <- 1 to ops.size) yield try {
requester.expectMsgType[OperationReply]
} catch {
case ex: Throwable if ops.size > 10 => sys.error(s"failure to receive confirmation $i/${ops.size}\n$ex")
case ex: Throwable => sys.error(s"failure to receive confirmation $i/${ops.size}\nRequests:" + ops.mkString("\n ", "\n ", "") + s"\n$ex")
}
val replies = repliesUnsorted.sortBy(_.id)
if (replies != expectedReplies) {
val pairs = (replies zip expectedReplies).zipWithIndex filter (x => x._1._1 != x._1._2)
fail("unexpected replies:" + pairs.map(x => s"at index ${x._2}: got ${x._1._1}, expected ${x._1._2}").mkString("\n ", "\n ", ""))
}
}
def verify(probe: TestProbe, ops: Seq[Operation], expected: Seq[OperationReply]): Unit = {
val topNode = system.actorOf(Props[BinaryTreeSet])
ops foreach { op =>
topNode ! op
}
receiveN(probe, ops, expected)
// the grader also verifies that enough actors are created
}
@Test def `proper inserts and lookups (5pts)`(): Unit = {
val topNode = system.actorOf(Props[BinaryTreeSet])
topNode ! Contains(testActor, id = 1, 1)
expectMsg(ContainsResult(1, false))
topNode ! Insert(testActor, id = 2, 1)
topNode ! Contains(testActor, id = 3, 1)
expectMsg(OperationFinished(2))
expectMsg(ContainsResult(3, true))
()
}
@Test def `instruction example (5pts)`(): Unit = {
val requester = TestProbe()
val requesterRef = requester.ref
val ops = List(
Insert(requesterRef, id=100, 1),
Contains(requesterRef, id=50, 2),
Remove(requesterRef, id=10, 1),
Insert(requesterRef, id=20, 2),
Contains(requesterRef, id=80, 1),
Contains(requesterRef, id=70, 2)
)
val expectedReplies = List(
OperationFinished(id=10),
OperationFinished(id=20),
ContainsResult(id=50, false),
ContainsResult(id=70, true),
ContainsResult(id=80, false),
OperationFinished(id=100)
)
verify(requester, ops, expectedReplies)
}
@Test def `behave identically to built-in set (includes GC) (40pts)`(): Unit = {
val rnd = new Random()
def randomOperations(requester: ActorRef, count: Int): Seq[Operation] = {
def randomElement: Int = rnd.nextInt(100)
def randomOperation(requester: ActorRef, id: Int): Operation = rnd.nextInt(4) match {
case 0 => Insert(requester, id, randomElement)
case 1 => Insert(requester, id, randomElement)
case 2 => Contains(requester, id, randomElement)
case 3 => Remove(requester, id, randomElement)
}
for (seq <- 0 until count) yield randomOperation(requester, seq)
}
def referenceReplies(operations: Seq[Operation]): Seq[OperationReply] = {
var referenceSet = Set.empty[Int]
def replyFor(op: Operation): OperationReply = op match {
case Insert(_, seq, elem) =>
referenceSet = referenceSet + elem
OperationFinished(seq)
case Remove(_, seq, elem) =>
referenceSet = referenceSet - elem
OperationFinished(seq)
case Contains(_, seq, elem) =>
ContainsResult(seq, referenceSet(elem))
}
for (op <- operations) yield replyFor(op)
}
val requester = TestProbe()
val topNode = system.actorOf(Props[BinaryTreeSet])
val count = 1000
val ops = randomOperations(requester.ref, count)
val expectedReplies = referenceReplies(ops)
ops foreach { op =>
topNode ! op
if (rnd.nextDouble() < 0.1) topNode ! GC
}
receiveN(requester, ops, expectedReplies)
}
}

View File

@ -0,0 +1,28 @@
package kmeans
import java.util.concurrent._
import scala.collection.{mutable, Map, Seq}
import scala.collection.parallel.{ParMap, ParSeq}
import scala.collection.parallel.CollectionConverters._
import scala.math._
import org.junit._
import org.junit.Assert.assertEquals
class KMeansSuite {
object KM extends KMeans
import KM._
def checkParClassify(points: ParSeq[Point], means: ParSeq[Point], expected: ParMap[Point, ParSeq[Point]]): Unit = {
assertEquals(s"classify($points, $means) should equal to $expected", expected, classify(points, means))
}
@Test def `'classify' should work for empty 'points' and empty 'means'`: Unit = {
val points: ParSeq[Point] = IndexedSeq().par
val means: ParSeq[Point] = IndexedSeq().par
val expected = ParMap[Point, ParSeq[Point]]()
checkParClassify(points, means, expected)
}
}