Compare commits

...

No commits in common. "actorbintree" and "stackoverflow" have entirely different histories.

11 changed files with 404 additions and 338 deletions

4
.gitignore vendored
View File

@ -14,3 +14,7 @@ target/
# Dotty IDE
/.dotty-ide-artifact
/.dotty-ide.json
# datasets
stackoverflow-grading.csv
wikipedia-grading.dat

View File

@ -25,7 +25,7 @@ grade:
tags:
- cs206
image:
name: smarter3/moocs:reactive-actorbintree-2020-04-15
name: smarter3/moocs:bigdata-stackoverflow-2020-05-11-2
entrypoint: [""]
allow_failure: true
before_script:

View File

@ -1,4 +1,9 @@
// Student tasks (i.e. submit, packageSubmission)
enablePlugins(StudentTasks)
courseraId := ch.epfl.lamp.CourseraId(
key = "7ByAoS4kEea1yxIfJA1CUw",
itemId = "QhzMw",
premiumItemId = Some("FWGnz"),
partId = "OY5fJ"
)

View File

@ -1,24 +1,20 @@
course := "reactive"
assignment := "actorbintree"
course := "bigdata"
assignment := "stackoverflow"
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
parallelExecution in Test := false
val akkaVersion = "2.6.0"
scalaVersion := "0.23.0-bin-20200211-5b006fb-NIGHTLY"
scalacOptions ++= Seq(
"-feature",
"-deprecation",
"-encoding", "UTF-8",
"-unchecked",
"-language:implicitConversions"
scalaVersion := "0.24.0-RC1"
scalacOptions ++= Seq("-language:implicitConversions", "-deprecation")
libraryDependencies ++= Seq(
"com.novocode" % "junit-interface" % "0.11" % Test,
("org.apache.spark" %% "spark-core" % "3.0.0-X1").withDottyCompat(scalaVersion.value),
)
libraryDependencies ++= Seq(
"com.typesafe.akka" %% "akka-actor" % akkaVersion,
"com.typesafe.akka" %% "akka-testkit" % akkaVersion % Test,
"com.novocode" % "junit-interface" % "0.11" % Test
).map(_.withDottyCompat(scalaVersion.value))
testSuite := "actorbintree.BinaryTreeSuite"
// Contains Spark 3 snapshot built against 2.13: https://github.com/smarter/spark/tree/scala-2.13
resolvers += Resolver.bintrayRepo("smarter", "maven")
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
testSuite := "stackoverflow.StackOverflowSuite"
// Without forking, ctrl-c doesn't actually fully stop Spark
fork in run := true
fork in Test := true

Binary file not shown.

View File

View File

@ -1,189 +0,0 @@
/**
* Copyright (C) 2009-2013 Typesafe Inc. <http://www.typesafe.com>
*/
package actorbintree
import akka.actor._
import scala.collection.immutable.Queue
object BinaryTreeSet {
trait Operation {
def requester: ActorRef
def id: Int
def elem: Int
}
trait OperationReply {
def id: Int
}
/** Request with identifier `id` to insert an element `elem` into the tree.
* The actor at reference `requester` should be notified when this operation
* is completed.
*/
case class Insert(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request with identifier `id` to check whether an element `elem` is present
* in the tree. The actor at reference `requester` should be notified when
* this operation is completed.
*/
case class Contains(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request with identifier `id` to remove the element `elem` from the tree.
* The actor at reference `requester` should be notified when this operation
* is completed.
*/
case class Remove(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request to perform garbage collection */
case object GC
/** Holds the answer to the Contains request with identifier `id`.
* `result` is true if and only if the element is present in the tree.
*/
case class ContainsResult(id: Int, result: Boolean) extends OperationReply
/** Message to signal successful completion of an insert or remove operation. */
case class OperationFinished(id: Int) extends OperationReply
}
class BinaryTreeSet extends Actor {
import BinaryTreeSet._
import BinaryTreeNode._
def createRoot: ActorRef = context.actorOf(BinaryTreeNode.props(0, initiallyRemoved = true))
var root = createRoot
// optional
var pendingQueue = Queue.empty[Operation]
// optional
def receive = normal
// optional
/** Accepts `Operation` and `GC` messages. */
val normal: Receive = {
case op:Operation => root ! op
case GC => {
val newRoot = createRoot;
root ! CopyTo(newRoot)
context.become(garbageCollecting(newRoot))
}
}
// optional
/** Handles messages while garbage collection is performed.
* `newRoot` is the root of the new binary tree where we want to copy
* all non-removed elements into.
*/
def garbageCollecting(newRoot: ActorRef): Receive = {
case op:Operation => pendingQueue = pendingQueue.enqueue(op)
case CopyFinished =>
pendingQueue.foreach(newRoot ! _) //foreach preserves order of a queue (same as dequeueing)
root ! PoisonPill //Will also stop all of its children
pendingQueue = Queue.empty
root = newRoot;
context.become(normal)
//Ignore GC messages here
}
}
object BinaryTreeNode {
trait Position
case object Left extends Position
case object Right extends Position
case class CopyTo(treeNode: ActorRef)
case object CopyFinished
def props(elem: Int, initiallyRemoved: Boolean) = Props(classOf[BinaryTreeNode], elem, initiallyRemoved)
}
class BinaryTreeNode(val elem: Int, initiallyRemoved: Boolean) extends Actor {
import BinaryTreeNode._
import BinaryTreeSet._
var subtrees = Map[Position, ActorRef]()
var removed = initiallyRemoved
// optional
def receive = normal
def goDownTo(elem : Int) : Position = if(elem < this.elem) Left else Right
// optional
/** Handles `Operation` messages and `CopyTo` requests. */
val normal: Receive = {
case Insert (requester, id, elem) =>
if(elem == this.elem && !removed){
requester ! OperationFinished(id)
}else{
val nextPos = goDownTo(elem)
subtrees get nextPos match{
case Some(node) => node ! Insert(requester, id, elem)
case None => {
val newActorSubtree = (nextPos, context.actorOf(BinaryTreeNode.props(elem, false)))
subtrees = subtrees + newActorSubtree
requester ! OperationFinished(id);
}
}
}
case Contains(requester, id, elem) =>
if(elem == this.elem && !removed)
requester ! ContainsResult(id, true)
else{
//Need to search subtrees
subtrees get goDownTo(elem) match{
case Some(node) => node ! Contains(requester, id, elem)
case None => requester ! ContainsResult(id, false)
}
}
case Remove (requester, id, elem) =>
if(elem == this.elem && !removed){
removed = true
requester ! OperationFinished(id)
}else{
subtrees get goDownTo(elem) match{
case Some(node) => node ! Remove(requester, id, elem)
case None => requester ! OperationFinished(id) // (elem isn't in the tree)
}
}
case CopyTo(newRoot) =>
//We are already done, nothing to do
if(removed && subtrees.isEmpty) context.parent ! CopyFinished
else{
if(!removed) newRoot ! Insert(self, elem, elem)
subtrees.values foreach(_ ! CopyTo(newRoot)) //Copy subtrees elems
//val insertConfirmed = if(removed) true else false, hence we can simply pass removed
context.become(copying(subtrees.values.toSet, removed))
}
}
// optional
/** `expected` is the set of ActorRefs whose replies we are waiting for,
* `insertConfirmed` tracks whether the copy of this node to the new tree has been confirmed.
*/
def copying(expected: Set[ActorRef], insertConfirmed: Boolean): Receive = {
//To catch the insert of this node into the new tree beeing finished
case OperationFinished(_) => {
if(expected.isEmpty) context.parent ! CopyFinished
else context.become(copying(expected, true))
}
case CopyFinished => {
val newExp = expected-sender
if(insertConfirmed && newExp.isEmpty){
context.parent ! CopyFinished
}else{
context.become(copying(newExp, insertConfirmed))
}
}
}
}

View File

@ -0,0 +1,329 @@
package stackoverflow
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
import org.apache.log4j.{Logger, Level}
import annotation.tailrec
import scala.reflect.ClassTag
import scala.util.Properties.isWin
type Question = Posting
type Answer = Posting
type QID = Int
type HighScore = Int
type LangIndex = Int
/** A raw stackoverflow posting, either a question or an answer */
case class Posting(postingType: Int, id: Int, acceptedAnswer: Option[Int], parentId: Option[QID], score: Int, tags: Option[String]) extends Serializable
/** The main class */
object StackOverflow extends StackOverflow {
// Reduce Spark logging verbosity
Logger.getLogger("org").setLevel(Level.ERROR)
if (isWin) System.setProperty("hadoop.home.dir", System.getProperty("user.dir") + "\\winutils\\hadoop-2.7.4")
@transient lazy val conf: SparkConf = new SparkConf().setMaster("local[2]").setAppName("StackOverflow")
@transient lazy val sc: SparkContext = new SparkContext(conf)
/** Main function */
def main(args: Array[String]): Unit = {
val lines = sc.textFile("src/main/resources/stackoverflow/stackoverflow-grading.csv")
val raw = rawPostings(lines)
val grouped = groupedPostings(raw)
val scored = scoredPostings(grouped)
val vectors = vectorPostings(scored)
// assert(vectors.count() == 2121822, "Incorrect number of vectors: " + vectors.count())
val means = kmeans(sampleVectors(vectors), vectors, debug = true)
val results = clusterResults(means, vectors)
printResults(results)
}
}
/** The parsing and kmeans methods */
class StackOverflow extends Serializable {
/** Languages */
val langs =
List(
"JavaScript", "Java", "PHP", "Python", "C#", "C++", "Ruby", "CSS",
"Objective-C", "Perl", "Scala", "Haskell", "MATLAB", "Clojure", "Groovy")
/** K-means parameter: How "far apart" languages should be for the kmeans algorithm? */
def langSpread = 50000
assert(langSpread > 0, "If langSpread is zero we can't recover the language from the input data!")
/** K-means parameter: Number of clusters */
def kmeansKernels = 45
/** K-means parameter: Convergence criteria */
def kmeansEta: Double = 20.0D
/** K-means parameter: Maximum iterations */
def kmeansMaxIterations = 120
//
//
// Parsing utilities:
//
//
/** Load postings from the given file */
def rawPostings(lines: RDD[String]): RDD[Posting] =
lines.map(line => {
val arr = line.split(",")
Posting(postingType = arr(0).toInt,
id = arr(1).toInt,
acceptedAnswer = if (arr(2) == "") None else Some(arr(2).toInt),
parentId = if (arr(3) == "") None else Some(arr(3).toInt),
score = arr(4).toInt,
tags = if (arr.length >= 6) Some(arr(5).intern()) else None)
})
/** Group the questions and answers together */
def groupedPostings(postings: RDD[Posting]): RDD[(QID, Iterable[(Question, Answer)])] = {
val questions : RDD[Question] = postings.filter(_.postingType == 1)
val answers : RDD[Answer] = postings.filter(_.postingType == 2)
val qidQuestionPair : RDD[(QID, Question)] = questions.map(q => (q.id, q))
val qidAnswerPair : RDD[(QID, Answer)] = answers.map(a => (a.parentId.get, a))
val qidQA : RDD[(QID, (Question, Answer))] = qidQuestionPair.join(qidAnswerPair)
qidQA.groupByKey
}
/** Compute the maximum score for each posting */
def scoredPostings(grouped: RDD[(QID, Iterable[(Question, Answer)])]): RDD[(Question, HighScore)] = {
def answerHighScore(as: Array[Answer]): HighScore = {
var highScore = 0
var i = 0
while (i < as.length) {
val score = as(i).score
if (score > highScore)
highScore = score
i += 1
}
highScore
}
grouped.map{case (_, iter) =>
val question = iter.head._1;
val answers = iter map { case (q, a) => a }
(question, answerHighScore(answers.toArray))
}
}
/** Compute the vectors for the kmeans */
def vectorPostings(scored: RDD[(Question, HighScore)]): RDD[(LangIndex, HighScore)] = {
/** Return optional index of first language that occurs in `tags`. */
def firstLangInTag(tag: Option[String], ls: List[String]): Option[Int] = {
if (tag.isEmpty) None
else if (ls.isEmpty) None
else if (tag.get == ls.head) Some(0) // index: 0
else {
val tmp = firstLangInTag(tag, ls.tail)
tmp match {
case None => None
case Some(i) => Some(i + 1) // index i in ls.tail => index i+1
}
}
}
scored.map{ case (q, hs) => (firstLangInTag(q.tags, langs).get * langSpread, hs)}.persist()
}
/** Sample the vectors */
def sampleVectors(vectors: RDD[(LangIndex, HighScore)]): Array[(Int, Int)] = {
assert(kmeansKernels % langs.length == 0, "kmeansKernels should be a multiple of the number of languages studied.")
val perLang = kmeansKernels / langs.length
// http://en.wikipedia.org/wiki/Reservoir_sampling
def reservoirSampling(lang: Int, iter: Iterator[Int], size: Int): Array[Int] = {
val res = new Array[Int](size)
val rnd = new util.Random(lang)
for (i <- 0 until size) {
assert(iter.hasNext, s"iterator must have at least $size elements")
res(i) = iter.next
}
var i = size.toLong
while (iter.hasNext) {
val elt = iter.next
val j = math.abs(rnd.nextLong) % i
if (j < size)
res(j.toInt) = elt
i += 1
}
res
}
val res =
if (langSpread < 500)
// sample the space regardless of the language
vectors.takeSample(false, kmeansKernels, 42)
else
// sample the space uniformly from each language partition
vectors.groupByKey.flatMap({
case (lang, vectors) => reservoirSampling(lang, vectors.iterator, perLang).map((lang, _))
}).collect()
assert(res.length == kmeansKernels, res.length)
res
}
//
//
// Kmeans method:
//
//
/** Main kmeans computation */
@tailrec final def kmeans(means: Array[(Int, Int)], vectors: RDD[(Int, Int)], iter: Int = 1, debug: Boolean = false): Array[(Int, Int)] = {
val newMeans = means.clone() // you need to compute newMeans
// TODO: Fill in the newMeans array
val distance = euclideanDistance(means, newMeans)
if (debug) {
println(s"""Iteration: $iter
| * current distance: $distance
| * desired distance: $kmeansEta
| * means:""".stripMargin)
for (idx <- 0 until kmeansKernels)
println(f" ${means(idx).toString}%20s ==> ${newMeans(idx).toString}%20s " +
f" distance: ${euclideanDistance(means(idx), newMeans(idx))}%8.0f")
}
if (converged(distance))
newMeans
else if (iter < kmeansMaxIterations)
kmeans(newMeans, vectors, iter + 1, debug)
else {
if (debug) {
println("Reached max iterations!")
}
newMeans
}
}
//
//
// Kmeans utilities:
//
//
/** Decide whether the kmeans clustering converged */
def converged(distance: Double) =
distance < kmeansEta
/** Return the euclidean distance between two points */
def euclideanDistance(v1: (Int, Int), v2: (Int, Int)): Double = {
val part1 = (v1._1 - v2._1).toDouble * (v1._1 - v2._1)
val part2 = (v1._2 - v2._2).toDouble * (v1._2 - v2._2)
part1 + part2
}
/** Return the euclidean distance between two points */
def euclideanDistance(a1: Array[(Int, Int)], a2: Array[(Int, Int)]): Double = {
assert(a1.length == a2.length)
var sum = 0d
var idx = 0
while(idx < a1.length) {
sum += euclideanDistance(a1(idx), a2(idx))
idx += 1
}
sum
}
/** Return the closest point */
def findClosest(p: (Int, Int), centers: Array[(Int, Int)]): Int = {
var bestIndex = 0
var closest = Double.PositiveInfinity
for (i <- 0 until centers.length) {
val tempDist = euclideanDistance(p, centers(i))
if (tempDist < closest) {
closest = tempDist
bestIndex = i
}
}
bestIndex
}
/** Average the vectors */
def averageVectors(ps: Iterable[(Int, Int)]): (Int, Int) = {
val iter = ps.iterator
var count = 0
var comp1: Long = 0
var comp2: Long = 0
while (iter.hasNext) {
val item = iter.next
comp1 += item._1
comp2 += item._2
count += 1
}
((comp1 / count).toInt, (comp2 / count).toInt)
}
//
//
// Displaying results:
//
//
def clusterResults(means: Array[(Int, Int)], vectors: RDD[(LangIndex, HighScore)]): Array[(String, Double, Int, Int)] = {
val closest = vectors.map(p => (findClosest(p, means), p))
val closestGrouped = closest.groupByKey()
val median = closestGrouped.mapValues { vs =>
val dominantLangIndex = vs.groupBy(_._1).maxBy(_._2.size)._1 / langSpread
val langLabel: String = langs(dominantLangIndex)// most common language in the cluster
val nbOfDominant = vs.count(_._1 / langSpread == dominantLangIndex)
val langPercent: Double = 100.0 * (nbOfDominant.toDouble / vs.size) // percent of the questions in the most common language
val clusterSize: Int = vs.size
val medianScore: Int = {
val highscores = vs.map{ case (li, hs) => hs }
val sortedHighscores = highscores.toArray.sorted;
val mid = highscores.size / 2;
highscores.size % 2 match{
case 1 => sortedHighscores(mid)
case 0 => (sortedHighscores(mid-1) + sortedHighscores(mid)) / 2
}
}
(langLabel, langPercent, clusterSize, medianScore)
}
median.collect().map(_._2).sortBy(_._4)
}
def printResults(results: Array[(String, Double, Int, Int)]): Unit = {
println("Resulting clusters:")
println(" Score Dominant language (%percent) Questions")
println("================================================")
for ((lang, percent, size, score) <- results)
println(f"${score}%7d ${lang}%-17s (${percent}%-5.1f%%) ${size}%7d")
}
}

View File

@ -1,126 +0,0 @@
/**
* Copyright (C) 2009-2015 Typesafe Inc. <http://www.typesafe.com>
*/
package actorbintree
import akka.actor.{ActorRef, ActorSystem, Props, actorRef2Scala, scala2ActorRef}
import akka.testkit.{ImplicitSender, TestKit, TestProbe}
import org.junit.Test
import org.junit.Assert._
import scala.util.Random
import scala.concurrent.duration._
class BinaryTreeSuite extends TestKit(ActorSystem("BinaryTreeSuite")) with ImplicitSender {
import actorbintree.BinaryTreeSet._
def receiveN(requester: TestProbe, ops: Seq[Operation], expectedReplies: Seq[OperationReply]): Unit =
requester.within(5.seconds) {
val repliesUnsorted = for (i <- 1 to ops.size) yield try {
requester.expectMsgType[OperationReply]
} catch {
case ex: Throwable if ops.size > 10 => sys.error(s"failure to receive confirmation $i/${ops.size}\n$ex")
case ex: Throwable => sys.error(s"failure to receive confirmation $i/${ops.size}\nRequests:" + ops.mkString("\n ", "\n ", "") + s"\n$ex")
}
val replies = repliesUnsorted.sortBy(_.id)
if (replies != expectedReplies) {
val pairs = (replies zip expectedReplies).zipWithIndex filter (x => x._1._1 != x._1._2)
fail("unexpected replies:" + pairs.map(x => s"at index ${x._2}: got ${x._1._1}, expected ${x._1._2}").mkString("\n ", "\n ", ""))
}
}
def verify(probe: TestProbe, ops: Seq[Operation], expected: Seq[OperationReply]): Unit = {
val topNode = system.actorOf(Props[BinaryTreeSet])
ops foreach { op =>
topNode ! op
}
receiveN(probe, ops, expected)
// the grader also verifies that enough actors are created
}
@Test def `proper inserts and lookups (5pts)`(): Unit = {
val topNode = system.actorOf(Props[BinaryTreeSet])
topNode ! Contains(testActor, id = 1, 1)
expectMsg(ContainsResult(1, false))
topNode ! Insert(testActor, id = 2, 1)
topNode ! Contains(testActor, id = 3, 1)
expectMsg(OperationFinished(2))
expectMsg(ContainsResult(3, true))
()
}
@Test def `instruction example (5pts)`(): Unit = {
val requester = TestProbe()
val requesterRef = requester.ref
val ops = List(
Insert(requesterRef, id=100, 1),
Contains(requesterRef, id=50, 2),
Remove(requesterRef, id=10, 1),
Insert(requesterRef, id=20, 2),
Contains(requesterRef, id=80, 1),
Contains(requesterRef, id=70, 2)
)
val expectedReplies = List(
OperationFinished(id=10),
OperationFinished(id=20),
ContainsResult(id=50, false),
ContainsResult(id=70, true),
ContainsResult(id=80, false),
OperationFinished(id=100)
)
verify(requester, ops, expectedReplies)
}
@Test def `behave identically to built-in set (includes GC) (40pts)`(): Unit = {
val rnd = new Random()
def randomOperations(requester: ActorRef, count: Int): Seq[Operation] = {
def randomElement: Int = rnd.nextInt(100)
def randomOperation(requester: ActorRef, id: Int): Operation = rnd.nextInt(4) match {
case 0 => Insert(requester, id, randomElement)
case 1 => Insert(requester, id, randomElement)
case 2 => Contains(requester, id, randomElement)
case 3 => Remove(requester, id, randomElement)
}
for (seq <- 0 until count) yield randomOperation(requester, seq)
}
def referenceReplies(operations: Seq[Operation]): Seq[OperationReply] = {
var referenceSet = Set.empty[Int]
def replyFor(op: Operation): OperationReply = op match {
case Insert(_, seq, elem) =>
referenceSet = referenceSet + elem
OperationFinished(seq)
case Remove(_, seq, elem) =>
referenceSet = referenceSet - elem
OperationFinished(seq)
case Contains(_, seq, elem) =>
ContainsResult(seq, referenceSet(elem))
}
for (op <- operations) yield replyFor(op)
}
val requester = TestProbe()
val topNode = system.actorOf(Props[BinaryTreeSet])
val count = 1000
val ops = randomOperations(requester.ref, count)
val expectedReplies = referenceReplies(ops)
ops foreach { op =>
topNode ! op
if (rnd.nextDouble() < 0.1) topNode ! GC
}
receiveN(requester, ops, expectedReplies)
}
}

View File

@ -0,0 +1,47 @@
package stackoverflow
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
import org.junit._
import org.junit.Assert.assertEquals
import java.io.File
import scala.io.{ Codec, Source }
import scala.util.Properties.isWin
object StackOverflowSuite {
if (isWin) System.setProperty("hadoop.home.dir", System.getProperty("user.dir") + "\\winutils\\hadoop-2.7.4")
val conf: SparkConf = new SparkConf().setMaster("local[2]").setAppName("StackOverflow")
val sc: SparkContext = new SparkContext(conf)
}
class StackOverflowSuite {
import StackOverflowSuite._
lazy val testObject = new StackOverflow {
override val langs =
List(
"JavaScript", "Java", "PHP", "Python", "C#", "C++", "Ruby", "CSS",
"Objective-C", "Perl", "Scala", "Haskell", "MATLAB", "Clojure", "Groovy")
override def langSpread = 50000
override def kmeansKernels = 45
override def kmeansEta: Double = 20.0D
override def kmeansMaxIterations = 120
}
@Test def `testObject can be instantiated`: Unit = {
val instantiatable = try {
testObject
true
} catch {
case _: Throwable => false
}
assert(instantiatable, "Can't instantiate a StackOverflow object")
}
@Rule def individualTestTimeout = new org.junit.rules.Timeout(300 * 1000)
}

Binary file not shown.