Compare commits

..

No commits in common. "actorbintree" and "barneshut" have entirely different histories.

16 changed files with 1243 additions and 337 deletions

View File

@ -25,7 +25,7 @@ grade:
tags:
- cs206
image:
name: smarter3/moocs:reactive-actorbintree-2020-04-15
name: smarter3/moocs:parprog1-barneshut-2020-03-09
entrypoint: [""]
allow_failure: true
before_script:

View File

@ -1,4 +1,9 @@
// Student tasks (i.e. submit, packageSubmission)
enablePlugins(StudentTasks)
courseraId := ch.epfl.lamp.CourseraId(
key = "itfW99oJEeWXuxJgUJEB-Q",
itemId = "z1ugn",
premiumItemId = Some("xGkV0"),
partId = "ep95q"
)

View File

@ -1,24 +1,13 @@
course := "reactive"
assignment := "actorbintree"
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
parallelExecution in Test := false
val akkaVersion = "2.6.0"
course := "parprog1"
assignment := "barneshut"
scalaVersion := "0.23.0-bin-20200211-5b006fb-NIGHTLY"
scalacOptions ++= Seq(
"-feature",
"-deprecation",
"-encoding", "UTF-8",
"-unchecked",
"-language:implicitConversions"
)
scalacOptions ++= Seq("-language:implicitConversions", "-deprecation")
libraryDependencies ++= Seq(
"com.typesafe.akka" %% "akka-actor" % akkaVersion,
"com.typesafe.akka" %% "akka-testkit" % akkaVersion % Test,
"com.novocode" % "junit-interface" % "0.11" % Test
"com.storm-enroute" %% "scalameter-core" % "0.19",
"org.scala-lang.modules" %% "scala-parallel-collections" % "0.2.0",
"com.novocode" % "junit-interface" % "0.11" % Test
).map(_.withDottyCompat(scalaVersion.value))
testSuite := "actorbintree.BinaryTreeSuite"
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
testSuite := "barneshut.BarnesHutSuite"

Binary file not shown.

View File

@ -1,189 +0,0 @@
/**
* Copyright (C) 2009-2013 Typesafe Inc. <http://www.typesafe.com>
*/
package actorbintree
import akka.actor._
import scala.collection.immutable.Queue
object BinaryTreeSet {
trait Operation {
def requester: ActorRef
def id: Int
def elem: Int
}
trait OperationReply {
def id: Int
}
/** Request with identifier `id` to insert an element `elem` into the tree.
* The actor at reference `requester` should be notified when this operation
* is completed.
*/
case class Insert(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request with identifier `id` to check whether an element `elem` is present
* in the tree. The actor at reference `requester` should be notified when
* this operation is completed.
*/
case class Contains(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request with identifier `id` to remove the element `elem` from the tree.
* The actor at reference `requester` should be notified when this operation
* is completed.
*/
case class Remove(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request to perform garbage collection */
case object GC
/** Holds the answer to the Contains request with identifier `id`.
* `result` is true if and only if the element is present in the tree.
*/
case class ContainsResult(id: Int, result: Boolean) extends OperationReply
/** Message to signal successful completion of an insert or remove operation. */
case class OperationFinished(id: Int) extends OperationReply
}
class BinaryTreeSet extends Actor {
import BinaryTreeSet._
import BinaryTreeNode._
def createRoot: ActorRef = context.actorOf(BinaryTreeNode.props(0, initiallyRemoved = true))
var root = createRoot
// optional
var pendingQueue = Queue.empty[Operation]
// optional
def receive = normal
// optional
/** Accepts `Operation` and `GC` messages. */
val normal: Receive = {
case op:Operation => root ! op
case GC => {
val newRoot = createRoot;
root ! CopyTo(newRoot)
context.become(garbageCollecting(newRoot))
}
}
// optional
/** Handles messages while garbage collection is performed.
* `newRoot` is the root of the new binary tree where we want to copy
* all non-removed elements into.
*/
def garbageCollecting(newRoot: ActorRef): Receive = {
case op:Operation => pendingQueue = pendingQueue.enqueue(op)
case CopyFinished =>
pendingQueue.foreach(newRoot ! _) //foreach preserves order of a queue (same as dequeueing)
root ! PoisonPill //Will also stop all of its children
pendingQueue = Queue.empty
root = newRoot;
context.become(normal)
//Ignore GC messages here
}
}
object BinaryTreeNode {
trait Position
case object Left extends Position
case object Right extends Position
case class CopyTo(treeNode: ActorRef)
case object CopyFinished
def props(elem: Int, initiallyRemoved: Boolean) = Props(classOf[BinaryTreeNode], elem, initiallyRemoved)
}
class BinaryTreeNode(val elem: Int, initiallyRemoved: Boolean) extends Actor {
import BinaryTreeNode._
import BinaryTreeSet._
var subtrees = Map[Position, ActorRef]()
var removed = initiallyRemoved
// optional
def receive = normal
def goDownTo(elem : Int) : Position = if(elem < this.elem) Left else Right
// optional
/** Handles `Operation` messages and `CopyTo` requests. */
val normal: Receive = {
case Insert (requester, id, elem) =>
if(elem == this.elem && !removed){
requester ! OperationFinished(id)
}else{
val nextPos = goDownTo(elem)
subtrees get nextPos match{
case Some(node) => node ! Insert(requester, id, elem)
case None => {
val newActorSubtree = (nextPos, context.actorOf(BinaryTreeNode.props(elem, false)))
subtrees = subtrees + newActorSubtree
requester ! OperationFinished(id);
}
}
}
case Contains(requester, id, elem) =>
if(elem == this.elem && !removed)
requester ! ContainsResult(id, true)
else{
//Need to search subtrees
subtrees get goDownTo(elem) match{
case Some(node) => node ! Contains(requester, id, elem)
case None => requester ! ContainsResult(id, false)
}
}
case Remove (requester, id, elem) =>
if(elem == this.elem && !removed){
removed = true
requester ! OperationFinished(id)
}else{
subtrees get goDownTo(elem) match{
case Some(node) => node ! Remove(requester, id, elem)
case None => requester ! OperationFinished(id) // (elem isn't in the tree)
}
}
case CopyTo(newRoot) =>
//We are already done, nothing to do
if(removed && subtrees.isEmpty) context.parent ! CopyFinished
else{
if(!removed) newRoot ! Insert(self, elem, elem)
subtrees.values foreach(_ ! CopyTo(newRoot)) //Copy subtrees elems
//val insertConfirmed = if(removed) true else false, hence we can simply pass removed
context.become(copying(subtrees.values.toSet, removed))
}
}
// optional
/** `expected` is the set of ActorRefs whose replies we are waiting for,
* `insertConfirmed` tracks whether the copy of this node to the new tree has been confirmed.
*/
def copying(expected: Set[ActorRef], insertConfirmed: Boolean): Receive = {
//To catch the insert of this node into the new tree beeing finished
case OperationFinished(_) => {
if(expected.isEmpty) context.parent ! CopyFinished
else context.become(copying(expected, true))
}
case CopyFinished => {
val newExp = expected-sender
if(insertConfirmed && newExp.isEmpty){
context.parent ! CopyFinished
}else{
context.become(copying(newExp, insertConfirmed))
}
}
}
}

View File

@ -0,0 +1,151 @@
package barneshut
import java.awt._
import java.awt.event._
import javax.swing._
import javax.swing.event._
import scala.collection.parallel._
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
object BarnesHut {
val model = new SimulationModel
var simulator: Simulator = _
def initialize(parallelismLevel: Int, pattern: String, nbodies: Int): Unit = {
model.initialize(parallelismLevel, pattern, nbodies)
model.timeStats.clear()
simulator = new Simulator(model.taskSupport, model.timeStats)
}
class BarnesHutFrame extends JFrame("Barnes-Hut") {
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
setSize(1024, 600)
setLayout(new BorderLayout)
val rightpanel = new JPanel
rightpanel.setBorder(BorderFactory.createEtchedBorder(border.EtchedBorder.LOWERED))
rightpanel.setLayout(new BorderLayout)
add(rightpanel, BorderLayout.EAST)
val controls = new JPanel
controls.setLayout(new GridLayout(0, 2))
rightpanel.add(controls, BorderLayout.NORTH)
val parallelismLabel = new JLabel("Parallelism")
controls.add(parallelismLabel)
val items = (1 to Runtime.getRuntime.availableProcessors).map(_.toString).toArray
val parcombo = new JComboBox[String](items)
parcombo.setSelectedIndex(items.length - 1)
parcombo.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent) = {
initialize(getParallelism, "two-galaxies", getTotalBodies)
canvas.repaint()
}
})
controls.add(parcombo)
val bodiesLabel = new JLabel("Total bodies")
controls.add(bodiesLabel)
val bodiesSpinner = new JSpinner(new SpinnerNumberModel(25000, 32, 1000000, 1000))
bodiesSpinner.addChangeListener(new ChangeListener {
def stateChanged(e: ChangeEvent) = {
if (frame != null) {
initialize(getParallelism, "two-galaxies", getTotalBodies)
canvas.repaint()
}
}
})
controls.add(bodiesSpinner)
val stepbutton = new JButton("Step")
stepbutton.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
stepThroughSimulation()
}
})
controls.add(stepbutton)
val startButton = new JToggleButton("Start/Pause")
val startTimer = new javax.swing.Timer(0, new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
stepThroughSimulation()
}
})
startButton.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
if (startButton.isSelected) startTimer.start()
else startTimer.stop()
}
})
controls.add(startButton)
val quadcheckbox = new JToggleButton("Show quad")
quadcheckbox.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
model.shouldRenderQuad = quadcheckbox.isSelected
repaint()
}
})
controls.add(quadcheckbox)
val clearButton = new JButton("Restart")
clearButton.addActionListener(new ActionListener {
def actionPerformed(e: ActionEvent): Unit = {
initialize(getParallelism, "two-galaxies", getTotalBodies)
}
})
controls.add(clearButton)
val info = new JTextArea(" ")
info.setBorder(BorderFactory.createLoweredBevelBorder)
rightpanel.add(info, BorderLayout.SOUTH)
val canvas = new SimulationCanvas(model)
add(canvas, BorderLayout.CENTER)
setVisible(true)
def updateInformationBox(): Unit = {
val text = model.timeStats.toString
frame.info.setText("--- Statistics: ---\n" + text)
}
def stepThroughSimulation(): Unit = {
SwingUtilities.invokeLater(new Runnable {
def run() = {
val (bodies, quad) = simulator.step(model.bodies)
model.bodies = bodies
model.quad = quad
updateInformationBox()
repaint()
}
})
}
def getParallelism = {
val selidx = parcombo.getSelectedIndex
parcombo.getItemAt(selidx).toInt
}
def getTotalBodies = bodiesSpinner.getValue.asInstanceOf[Int]
initialize(getParallelism, "two-galaxies", getTotalBodies)
}
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName())
} catch {
case _: Exception => println("Cannot set look and feel, using the default one.")
}
val frame = new BarnesHutFrame
def main(args: Array[String]): Unit = {
frame.repaint()
}
}

View File

@ -0,0 +1,23 @@
package barneshut
import conctrees.ConcBuffer
// Interfaces used by the grading infrastructure. Do not change signatures
// or your submission will fail with a NoSuchMethodError.
trait SectorMatrixInterface {
def +=(b: Body): SectorMatrix
def combine(that: SectorMatrix): SectorMatrix
def apply(x: Int, y: Int): ConcBuffer[Body]
}
trait QuadInterface {
def massX: Float
def massY: Float
def mass: Float
def centerX: Float
def centerY: Float
def size: Float
def total: Int
def insert(b: Body): Quad
}

View File

@ -0,0 +1,146 @@
package barneshut
import java.awt._
import java.awt.event._
import javax.swing._
import javax.swing.event._
class SimulationCanvas(val model: SimulationModel) extends JComponent {
val MAX_RES = 3000
val pixels = new Array[Int](MAX_RES * MAX_RES)
override def paintComponent(gcan: Graphics) = {
super.paintComponent(gcan)
val width = getWidth
val height = getHeight
val img = new image.BufferedImage(width, height, image.BufferedImage.TYPE_INT_ARGB)
// clear canvas pixels
for (x <- 0 until MAX_RES; y <- 0 until MAX_RES) pixels(y * width + x) = 0
// count number of bodies in each pixel
for (b <- model.bodies) {
val px = ((b.x - model.screen.minX) / model.screen.width * width).toInt
val py = ((b.y - model.screen.minY) / model.screen.height * height).toInt
if (px >= 0 && px < width && py >= 0 && py < height) pixels(py * width + px) += 1
}
// set image intensity depending on the number of bodies in the pixel
for (y <- 0 until height; x <- 0 until width) {
val count = pixels(y * width + x)
val intensity = if (count > 0) math.min(255, 70 + count * 50) else 0
val color = (255 << 24) | (intensity << 16) | (intensity << 8) | intensity
img.setRGB(x, y, color)
}
// for debugging purposes, if the number of bodies is small, output their locations
val g = img.getGraphics.asInstanceOf[Graphics2D]
g.setColor(Color.GRAY)
if (model.bodies.length < 350) for (b <- model.bodies) {
def round(x: Float) = (x * 100).toInt / 100.0f
val px = ((b.x - model.screen.minX) / model.screen.width * width).toInt
val py = ((b.y - model.screen.minY) / model.screen.height * height).toInt
if (px >= 0 && px < width && py >= 0 && py < height) {
g.drawString(s"${round(b.x)}, ${round(b.y)}", px, py)
}
}
// render quad if necessary
if (model.shouldRenderQuad) {
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
val green = new Color(0, 225, 80, 150)
val red = new Color(200, 0, 0, 150)
g.setColor(green)
def drawQuad(depth: Int, quad: Quad): Unit = {
def drawRect(fx: Float, fy: Float, fsz: Float, q: Quad, fill: Boolean = false): Unit = {
val x = ((fx - model.screen.minX) / model.screen.width * width).toInt
val y = ((fy - model.screen.minY) / model.screen.height * height).toInt
val w = ((fx + fsz - model.screen.minX) / model.screen.width * width).toInt - x
val h = ((fy + fsz - model.screen.minY) / model.screen.height * height).toInt - y
g.drawRect(x, y, w, h)
if (fill) g.fillRect(x, y, w, h)
if (depth <= 5) g.drawString("#:" + q.total, x + w / 2, y + h / 2)
}
quad match {
case Fork(nw, ne, sw, se) =>
val cx = quad.centerX
val cy = quad.centerY
val sz = quad.size
drawRect(cx - sz / 2, cy - sz / 2, sz / 2, nw)
drawRect(cx - sz / 2, cy, sz / 2, sw)
drawRect(cx, cy - sz / 2, sz / 2, ne)
drawRect(cx, cy, sz / 2, se)
drawQuad(depth + 1, nw)
drawQuad(depth + 1, ne)
drawQuad(depth + 1, sw)
drawQuad(depth + 1, se)
case Empty(_, _, _) | Leaf(_, _, _, _) =>
// done
}
}
drawQuad(0, model.quad)
}
gcan.drawImage(img, 0, 0, null)
}
// zoom on mouse rotation
addMouseWheelListener(new MouseAdapter {
override def mouseWheelMoved(e: MouseWheelEvent): Unit = {
val rot = e.getWheelRotation
val cx = model.screen.centerX
val cy = model.screen.centerY
val w = model.screen.width
val h = model.screen.height
val factor = {
if (rot > 0) 0.52f
else if (rot < 0) 0.48f
else 0.5f
}
model.screen.minX = cx - w * factor
model.screen.minY = cy - h * factor
model.screen.maxX = cx + w * factor
model.screen.maxY = cy + h * factor
repaint()
}
})
// reset the last known mouse drag position on mouse press
var xlast = Int.MinValue
var ylast = Int.MinValue
addMouseListener(new MouseAdapter {
override def mousePressed(e: MouseEvent): Unit = {
xlast = Int.MinValue
ylast = Int.MinValue
}
})
// update the last known mouse drag position on mouse drag,
// update the boundaries of the visible area
addMouseMotionListener(new MouseMotionAdapter {
override def mouseDragged(e: MouseEvent): Unit = {
val xcurr = e.getX
val ycurr = e.getY
if (xlast != Int.MinValue) {
val xd = xcurr - xlast
val yd = ycurr - ylast
val w = model.screen.width
val h = model.screen.height
val cx = model.screen.centerX - xd * w / 1000
val cy = model.screen.centerY - yd * h / 1000
model.screen.minX = cx - w / 2
model.screen.minY = cy - h / 2
model.screen.maxX = cx + w / 2
model.screen.maxY = cy + h / 2
println(model.screen)
}
xlast = xcurr
ylast = ycurr
repaint()
}
})
}

View File

@ -0,0 +1,73 @@
package barneshut
import java.awt._
import java.awt.event._
import javax.swing._
import javax.swing.event._
import scala.collection.parallel.{TaskSupport, defaultTaskSupport}
import scala.{collection => coll}
class SimulationModel {
var screen = new Boundaries
var bodies: coll.Seq[Body] = Nil
var quad: Quad = Empty(screen.centerX, screen.centerY, Float.MaxValue)
var shouldRenderQuad = false
var timeStats = new TimeStatistics
var taskSupport: TaskSupport = defaultTaskSupport
def initialize(parallelismLevel: Int, pattern: String, totalBodies: Int): Unit = {
taskSupport = new collection.parallel.ForkJoinTaskSupport(
new java.util.concurrent.ForkJoinPool(parallelismLevel))
pattern match {
case "two-galaxies" => init2Galaxies(totalBodies)
case _ => sys.error(s"no such initial pattern: $pattern")
}
}
def init2Galaxies(totalBodies: Int): Unit = {
val bodyArray = new Array[Body](totalBodies)
val random = new scala.util.Random(213L)
def galaxy(from: Int, num: Int, maxradius: Float, cx: Float, cy: Float, sx: Float, sy: Float): Unit = {
val totalM = 1.5f * num
val blackHoleM = 1.0f * num
val cubmaxradius = maxradius * maxradius * maxradius
for (i <- from until (from + num)) {
val b = if (i == from) {
new Body(blackHoleM, cx, cy, sx, sy)
} else {
val angle = random.nextFloat * 2 * math.Pi
val radius = 25 + maxradius * random.nextFloat
val starx = cx + radius * math.sin(angle).toFloat
val stary = cy + radius * math.cos(angle).toFloat
val speed = math.sqrt(gee * blackHoleM / radius + gee * totalM * radius * radius / cubmaxradius)
val starspeedx = sx + (speed * math.sin(angle + math.Pi / 2)).toFloat
val starspeedy = sy + (speed * math.cos(angle + math.Pi / 2)).toFloat
val starmass = 1.0f + 1.0f * random.nextFloat
new Body(starmass, starx, stary, starspeedx, starspeedy)
}
bodyArray(i) = b
}
}
galaxy(0, bodyArray.length / 8, 300.0f, 0.0f, 0.0f, 0.0f, 0.0f)
galaxy(bodyArray.length / 8, bodyArray.length / 8 * 7, 350.0f, -1800.0f, -1200.0f, 0.0f, 0.0f)
bodies = bodyArray.toSeq
// compute center and boundaries
screen = new Boundaries
screen.minX = -2200.0f
screen.minY = -1600.0f
screen.maxX = 350.0f
screen.maxY = 350.0f
}
}

View File

@ -0,0 +1,112 @@
package barneshut
import java.awt._
import java.awt.event._
import javax.swing._
import javax.swing.event._
import scala.{collection => coll}
import scala.collection.parallel.{TaskSupport, Combiner}
import scala.collection.parallel.mutable.ParHashSet
import scala.collection.parallel.CollectionConverters._
class Simulator(val taskSupport: TaskSupport, val timeStats: TimeStatistics) {
def updateBoundaries(boundaries: Boundaries, body: Body): Boundaries = {
boundaries.minX = Math.min(boundaries.minX, body.x);
boundaries.minY = Math.min(boundaries.minY, body.y);
boundaries.maxX = Math.max(boundaries.maxX, body.x);
boundaries.maxY = Math.max(boundaries.maxY, body.y);
boundaries
}
def mergeBoundaries(a: Boundaries, b: Boundaries): Boundaries = {
val bnd = new Boundaries
bnd.minX = Math.min(a.minX, b.minX)
bnd.minY = Math.min(a.minY, b.minY)
bnd.maxX = Math.max(a.maxX, b.maxX)
bnd.maxY = Math.max(a.maxY, b.maxY)
bnd
}
def computeBoundaries(bodies: coll.Seq[Body]): Boundaries = timeStats.timed("boundaries") {
val parBodies = bodies.par
parBodies.tasksupport = taskSupport
parBodies.aggregate(new Boundaries)(updateBoundaries, mergeBoundaries)
}
def computeSectorMatrix(bodies: coll.Seq[Body], boundaries: Boundaries): SectorMatrix = timeStats.timed("matrix") {
val parBodies = bodies.par
parBodies.tasksupport = taskSupport
parBodies.aggregate(new SectorMatrix(boundaries, SECTOR_PRECISION))((accSM, b) => accSM += b, (sm1, sm2) => sm1.combine(sm2))
}
def computeQuad(sectorMatrix: SectorMatrix): Quad = timeStats.timed("quad") {
sectorMatrix.toQuad(taskSupport.parallelismLevel)
}
def updateBodies(bodies: coll.Seq[Body], quad: Quad): coll.Seq[Body] = timeStats.timed("update") {
val parBodies = bodies.par
parBodies.tasksupport = taskSupport
parBodies.map(_.updated(quad)).seq
}
def eliminateOutliers(bodies: coll.Seq[Body], sectorMatrix: SectorMatrix, quad: Quad): coll.Seq[Body] = timeStats.timed("eliminate") {
def isOutlier(b: Body): Boolean = {
val dx = quad.massX - b.x
val dy = quad.massY - b.y
val d = math.sqrt(dx * dx + dy * dy)
// object is far away from the center of the mass
if (d > eliminationThreshold * sectorMatrix.boundaries.size) {
val nx = dx / d
val ny = dy / d
val relativeSpeed = b.xspeed * nx + b.yspeed * ny
// object is moving away from the center of the mass
if (relativeSpeed < 0) {
val escapeSpeed = math.sqrt(2 * gee * quad.mass / d)
// object has the espace velocity
-relativeSpeed > 2 * escapeSpeed
} else false
} else false
}
def outliersInSector(x: Int, y: Int): Combiner[Body, ParHashSet[Body]] = {
val combiner = ParHashSet.newCombiner[Body]
combiner ++= sectorMatrix(x, y).filter(isOutlier)
combiner
}
val sectorPrecision = sectorMatrix.sectorPrecision
val horizontalBorder = for (x <- 0 until sectorPrecision; y <- Seq(0, sectorPrecision - 1)) yield (x, y)
val verticalBorder = for (y <- 1 until sectorPrecision - 1; x <- Seq(0, sectorPrecision - 1)) yield (x, y)
val borderSectors = horizontalBorder ++ verticalBorder
// compute the set of outliers
val parBorderSectors = borderSectors.par
parBorderSectors.tasksupport = taskSupport
val outliers = parBorderSectors.map({ case (x, y) => outliersInSector(x, y) }).reduce(_ combine _).result
// filter the bodies that are outliers
val parBodies = bodies.par
parBodies.filter(!outliers(_)).seq
}
def step(bodies: coll.Seq[Body]): (coll.Seq[Body], Quad) = {
// 1. compute boundaries
val boundaries = computeBoundaries(bodies)
// 2. compute sector matrix
val sectorMatrix = computeSectorMatrix(bodies, boundaries)
// 3. compute quad tree
val quad = computeQuad(sectorMatrix)
// 4. eliminate outliers
val filteredBodies = eliminateOutliers(bodies, sectorMatrix, quad)
// 5. update body velocities and positions
val newBodies = updateBodies(filteredBodies, quad)
(newBodies, quad)
}
}

View File

@ -0,0 +1,148 @@
package barneshut
package conctrees
import scala.annotation.tailrec
sealed trait Conc[@specialized(Int, Long, Float, Double) +T] {
def level: Int
def size: Int
def left: Conc[T]
def right: Conc[T]
def normalized = this
}
object Conc {
case class <>[+T](left: Conc[T], right: Conc[T]) extends Conc[T] {
val level = 1 + math.max(left.level, right.level)
val size = left.size + right.size
}
sealed trait Leaf[T] extends Conc[T] {
def left = sys.error("Leaves do not have children.")
def right = sys.error("Leaves do not have children.")
}
case object Empty extends Leaf[Nothing] {
def level = 0
def size = 0
}
class Single[@specialized(Int, Long, Float, Double) T](val x: T) extends Leaf[T] {
def level = 0
def size = 1
override def toString = s"Single($x)"
}
class Chunk[@specialized(Int, Long, Float, Double) T](val array: Array[T], val size: Int, val k: Int)
extends Leaf[T] {
def level = 0
override def toString = s"Chunk(${array.mkString("", ", ", "")}; $size; $k)"
}
case class Append[+T](left: Conc[T], right: Conc[T]) extends Conc[T] {
val level = 1 + math.max(left.level, right.level)
val size = left.size + right.size
override def normalized = {
def wrap[T](xs: Conc[T], ys: Conc[T]): Conc[T] = (xs: @unchecked) match {
case Append(ws, zs) => wrap(ws, zs <> ys)
case xs => xs <> ys
}
wrap(left, right)
}
}
def concatTop[T](xs: Conc[T], ys: Conc[T]) = {
if (xs == Empty) ys
else if (ys == Empty) xs
else concat(xs, ys)
}
private def concat[T](xs: Conc[T], ys: Conc[T]): Conc[T] = {
val diff = ys.level - xs.level
if (diff >= -1 && diff <= 1) new <>(xs, ys)
else if (diff < -1) {
if (xs.left.level >= xs.right.level) {
val nr = concat(xs.right, ys)
new <>(xs.left, nr)
} else {
val nrr = concat(xs.right.right, ys)
if (nrr.level == xs.level - 3) {
val nl = xs.left
val nr = new <>(xs.right.left, nrr)
new <>(nl, nr)
} else {
val nl = new <>(xs.left, xs.right.left)
val nr = nrr
new <>(nl, nr)
}
}
} else {
if (ys.right.level >= ys.left.level) {
val nl = concat(xs, ys.left)
new <>(nl, ys.right)
} else {
val nll = concat(xs, ys.left.left)
if (nll.level == ys.level - 3) {
val nl = new <>(nll, ys.left.right)
val nr = ys.right
new <>(nl, nr)
} else {
val nl = nll
val nr = new <>(ys.left.right, ys.right)
new <>(nl, nr)
}
}
}
}
def appendTop[T](xs: Conc[T], ys: Leaf[T]): Conc[T] = (xs: @unchecked) match {
case xs: Append[T] => append(xs, ys)
case _ <> _ => new Append(xs, ys)
case Empty => ys
case xs: Leaf[T] => new <>(xs, ys)
}
@tailrec private def append[T](xs: Append[T], ys: Conc[T]): Conc[T] = {
if (xs.right.level > ys.level) new Append(xs, ys)
else {
val zs = new <>(xs.right, ys)
xs.left match {
case ws @ Append(_, _) => append(ws, zs)
case ws if ws.level <= zs.level => ws <> zs
case ws => new Append(ws, zs)
}
}
}
def traverse[@specialized(Int, Long, Float, Double) T, @specialized(Int, Long, Float, Double) U](xs: Conc[T], f: T => U): Unit = (xs: @unchecked) match {
case left <> right =>
traverse(left, f)
traverse(right, f)
case s: Single[T] =>
f(s.x)
case c: Chunk[T] =>
val a = c.array
val sz = c.size
var i = 0
while (i < sz) {
f(a(i))
i += 1
}
case Empty =>
case Append(left, right) =>
traverse(left, f)
traverse(right, f)
case _ =>
sys.error("All cases should have been covered: " + xs + ", " + xs.getClass)
}
def iterator[@specialized(Int, Long, Float, Double) T](xs: Conc[T]): Iterator[T] = (xs: @unchecked) match {
case left <> right => iterator(left) ++ iterator(right)
case s: Single[T] => Iterator.single(s.x)
case c: Chunk[T] => c.array.iterator.take(c.size)
case Empty => Iterator.empty
case Append(left, right) => iterator(left) ++ iterator(right)
case _ => sys.error("All cases should have been covered: " + xs + ", " + xs.getClass)
}
}

View File

@ -0,0 +1,86 @@
package barneshut
package conctrees
import scala.reflect.ClassTag
import scala.collection.parallel.CollectionConverters._
import org.scalameter._
class ConcBuffer[@specialized(Byte, Char, Int, Long, Float, Double) T: ClassTag](
val k: Int, private var conc: Conc[T]
) extends Iterable[T] {
require(k > 0)
def this() = this(128, Conc.Empty)
private var chunk: Array[T] = new Array(k)
private var lastSize: Int = 0
def iterator: Iterator[T] = Conc.iterator(conc) ++ chunk.iterator.take(lastSize)
final def +=(elem: T): this.type = {
if (lastSize >= k) expand()
chunk(lastSize) = elem
lastSize += 1
this
}
final def combine(that: ConcBuffer[T]): ConcBuffer[T] = {
val combinedConc = this.result <> that.result
this.clear()
that.clear()
new ConcBuffer(k, combinedConc)
}
private def pack(): Unit = {
conc = Conc.appendTop(conc, new Conc.Chunk(chunk, lastSize, k))
}
private def expand(): Unit = {
pack()
chunk = new Array(k)
lastSize = 0
}
def clear(): Unit = {
conc = Conc.Empty
chunk = new Array(k)
lastSize = 0
}
def result: Conc[T] = {
pack()
conc
}
}
object ConcBufferRunner {
val standardConfig = config(
Key.exec.minWarmupRuns -> 20,
Key.exec.maxWarmupRuns -> 40,
Key.exec.benchRuns -> 60,
Key.verbose -> false
).withWarmer(new Warmer.Default)
def main(args: Array[String]): Unit = {
val size = 1000000
def run(p: Int): Unit = {
val taskSupport = new collection.parallel.ForkJoinTaskSupport(
new java.util.concurrent.ForkJoinPool(p))
val strings = (0 until size).map(_.toString)
val time = standardConfig measure {
val parallelized = strings.par
parallelized.tasksupport = taskSupport
parallelized.aggregate(new ConcBuffer[String])(_ += _, _ combine _).result
}
println(s"p = $p, time = ${time.value}")
}
run(1)
run(2)
run(4)
run(8)
}
}

View File

@ -0,0 +1,16 @@
package barneshut
import org.scalameter._
package object conctrees {
implicit class ConcOps[T](val self: Conc[T]) extends AnyVal {
def foreach[U](f: T => U) = Conc.traverse(self, f)
def <>(that: Conc[T]) = Conc.concatTop(self.normalized, that.normalized)
}
// Workaround Dotty's handling of the existential type KeyValue
implicit def keyValueCoerce[T](kv: (Key[T], T)): KeyValue = {
kv.asInstanceOf[KeyValue]
}
}

View File

@ -0,0 +1,334 @@
import java.util.concurrent._
import scala.{collection => coll}
import scala.util.DynamicVariable
import barneshut.conctrees._
package object barneshut {
class Boundaries {
var minX = Float.MaxValue
var minY = Float.MaxValue
var maxX = Float.MinValue
var maxY = Float.MinValue
def width = maxX - minX
def height = maxY - minY
def size = math.max(width, height)
def centerX = minX + width / 2
def centerY = minY + height / 2
override def toString = s"Boundaries($minX, $minY, $maxX, $maxY)"
}
sealed abstract class Quad extends QuadInterface {
def massX: Float
def massY: Float
def mass: Float
def centerX: Float
def centerY: Float
def size: Float
def total: Int
def insert(b: Body): Quad
}
case class Empty(centerX: Float, centerY: Float, size: Float) extends Quad {
def massX: Float = centerX
def massY: Float = centerY
def mass: Float = 0
def total: Int = 0
def insert(b: Body): Quad = Leaf(centerX, centerY, size, Seq(b))
}
case class Fork(
nw: Quad, ne: Quad, sw: Quad, se: Quad
) extends Quad {
val centerX: Float = (nw.centerX + ne.centerX)/2
val centerY: Float = (nw.centerY + sw.centerY)/2
val size: Float = nw.size + ne.size
val mass: Float = Seq(nw, ne, sw, se).map(_.mass).sum
val massX: Float = if(mass == 0) centerX else Seq(nw, ne, sw, se).map(q => q.mass * q.massX).sum/mass
val massY: Float = if(mass == 0) centerY else Seq(nw, ne, sw, se).map(q => q.mass * q.massY).sum/mass
val total: Int = Seq(nw, ne, sw, se).map(_.total).sum;
def insert(b: Body): Fork = {
if(b.x <= centerX){ //W
if(b.y <= centerY){ // NW
Fork(nw.insert(b), ne, sw, se)
}
else{ //SW
Fork(nw, ne, sw.insert(b), se)
}
}
else{ //EAST
if(b.y <= centerY){ //NE
Fork(nw, ne.insert(b), sw, se)
}
else{ //SE
Fork(nw, ne, sw, se.insert(b))
}
}
}
}
case class Leaf(centerX: Float, centerY: Float, size: Float, bodies: coll.Seq[Body])
extends Quad {
val mass = bodies.map(_.mass).sum
val massX = bodies.map(b => b.mass * b.x).sum / mass
val massY = bodies.map(b => b.mass * b.y).sum / mass
val total: Int = bodies.length
def insert(b: Body): Quad = {
if(size > minimumSize){
val wCorr = centerX - size/4
val eCorr = centerX + size/4
val nCorr = centerY - size/4
val sCorr = centerY + size/4
val newSize = size/2
val fork = Fork(
Empty(wCorr, nCorr, newSize),
Empty(eCorr, nCorr, newSize),
Empty(wCorr, sCorr, newSize),
Empty(eCorr, sCorr, newSize))
(bodies :+ b).foldLeft(fork)((f, b) => f.insert(b))
}
else {
Leaf(centerX, centerY, size, bodies :+ b)
}
}
}
def minimumSize = 0.00001f
def gee: Float = 100.0f
def delta: Float = 0.01f
def theta = 0.5f
def eliminationThreshold = 0.5f
def force(m1: Float, m2: Float, dist: Float): Float = gee * m1 * m2 / (dist * dist)
def distance(x0: Float, y0: Float, x1: Float, y1: Float): Float = {
math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0)).toFloat
}
class Body(val mass: Float, val x: Float, val y: Float, val xspeed: Float, val yspeed: Float) {
def updated(quad: Quad): Body = {
var netforcex = 0.0f
var netforcey = 0.0f
def addForce(thatMass: Float, thatMassX: Float, thatMassY: Float): Unit = {
val dist = distance(thatMassX, thatMassY, x, y)
/* If the distance is smaller than 1f, we enter the realm of close
* body interactions. Since we do not model them in this simplistic
* implementation, bodies at extreme proximities get a huge acceleration,
* and are catapulted from each other's gravitational pull at extreme
* velocities (something like this:
* http://en.wikipedia.org/wiki/Interplanetary_spaceflight#Gravitational_slingshot).
* To decrease the effect of this gravitational slingshot, as a very
* simple approximation, we ignore gravity at extreme proximities.
*/
if (dist > 1f) {
val dforce = force(mass, thatMass, dist)
val xn = (thatMassX - x) / dist
val yn = (thatMassY - y) / dist
val dforcex = dforce * xn
val dforcey = dforce * yn
netforcex += dforcex
netforcey += dforcey
}
}
def traverse(quad: Quad): Unit = (quad: Quad) match {
case Empty(_, _, _) =>
// no force
case Leaf(_, _, _, bodies) => bodies.foreach(b => addForce(b.mass, b.x, b.y))
// add force contribution of each body by calling addForce
case Fork(nw, ne, sw, se) => if(quad.size / distance(x, y, quad.centerX, quad.centerY) < theta)
addForce(quad.mass, quad.massX, quad.massY)
else {
traverse(nw)
traverse(ne)
traverse(sw)
traverse(se)
}
// see if node is far enough from the body,
// or recursion is needed
}
traverse(quad)
val nx = x + xspeed * delta
val ny = y + yspeed * delta
val nxspeed = xspeed + netforcex / mass * delta
val nyspeed = yspeed + netforcey / mass * delta
new Body(mass, nx, ny, nxspeed, nyspeed)
}
}
val SECTOR_PRECISION = 8
class SectorMatrix(val boundaries: Boundaries, val sectorPrecision: Int) extends SectorMatrixInterface {
val sectorSize = boundaries.size / sectorPrecision
val matrix = new Array[ConcBuffer[Body]](sectorPrecision * sectorPrecision)
for (i <- 0 until matrix.length) matrix(i) = new ConcBuffer
def +=(b: Body): SectorMatrix = {
val x = Math.max(Math.min(b.x, boundaries.maxX), boundaries.minX)
val y = Math.max(Math.min(b.y, boundaries.maxY), boundaries.minY)
//Distance from top-left corner
val dx = x - boundaries.minX;
val dy = y - boundaries.minY;
//Corresponding sector
val xSect = (dx / sectorSize).toInt
val ySect = (dy / sectorSize).toInt
apply(xSect, ySect) += b
this
}
def apply(x: Int, y: Int) = matrix(y * sectorPrecision + x)
def combine(that: SectorMatrix): SectorMatrix = {
var i = 0;
while(i < matrix.length){
matrix(i) = matrix(i).combine(that.matrix(i));
i += 1
}
this
}
def toQuad(parallelism: Int): Quad = {
def BALANCING_FACTOR = 4
def quad(x: Int, y: Int, span: Int, achievedParallelism: Int): Quad = {
if (span == 1) {
val sectorSize = boundaries.size / sectorPrecision
val centerX = boundaries.minX + x * sectorSize + sectorSize / 2
val centerY = boundaries.minY + y * sectorSize + sectorSize / 2
var emptyQuad: Quad = Empty(centerX, centerY, sectorSize)
val sectorBodies = this(x, y)
sectorBodies.foldLeft(emptyQuad)(_ insert _)
} else {
val nspan = span / 2
val nAchievedParallelism = achievedParallelism * 4
val (nw, ne, sw, se) =
if (parallelism > 1 && achievedParallelism < parallelism * BALANCING_FACTOR) parallel(
quad(x, y, nspan, nAchievedParallelism),
quad(x + nspan, y, nspan, nAchievedParallelism),
quad(x, y + nspan, nspan, nAchievedParallelism),
quad(x + nspan, y + nspan, nspan, nAchievedParallelism)
) else (
quad(x, y, nspan, nAchievedParallelism),
quad(x + nspan, y, nspan, nAchievedParallelism),
quad(x, y + nspan, nspan, nAchievedParallelism),
quad(x + nspan, y + nspan, nspan, nAchievedParallelism)
)
Fork(nw, ne, sw, se)
}
}
quad(0, 0, sectorPrecision, 1)
}
override def toString = s"SectorMatrix(#bodies: ${matrix.map(_.size).sum})"
}
class TimeStatistics {
private val timeMap = collection.mutable.Map[String, (Double, Int)]()
def clear() = timeMap.clear()
def timed[T](title: String)(body: =>T): T = {
var res: T = null.asInstanceOf[T]
val totalTime = /*measure*/ {
val startTime = System.currentTimeMillis()
res = body
(System.currentTimeMillis() - startTime)
}
timeMap.get(title) match {
case Some((total, num)) => timeMap(title) = (total + totalTime, num + 1)
case None => timeMap(title) = (0.0, 0)
}
println(s"$title: ${totalTime} ms; avg: ${timeMap(title)._1 / timeMap(title)._2}")
res
}
override def toString = {
timeMap map {
case (k, (total, num)) => k + ": " + (total / num * 100).toInt / 100.0 + " ms"
} mkString("\n")
}
}
val forkJoinPool = new ForkJoinPool
abstract class TaskScheduler {
def schedule[T](body: => T): ForkJoinTask[T]
def parallel[A, B](taskA: => A, taskB: => B): (A, B) = {
val right = task {
taskB
}
val left = taskA
(left, right.join())
}
}
class DefaultTaskScheduler extends TaskScheduler {
def schedule[T](body: => T): ForkJoinTask[T] = {
val t = new RecursiveTask[T] {
def compute = body
}
Thread.currentThread match {
case wt: ForkJoinWorkerThread =>
t.fork()
case _ =>
forkJoinPool.execute(t)
}
t
}
}
val scheduler =
new DynamicVariable[TaskScheduler](new DefaultTaskScheduler)
def task[T](body: => T): ForkJoinTask[T] = {
scheduler.value.schedule(body)
}
def parallel[A, B](taskA: => A, taskB: => B): (A, B) = {
scheduler.value.parallel(taskA, taskB)
}
def parallel[A, B, C, D](taskA: => A, taskB: => B, taskC: => C, taskD: => D): (A, B, C, D) = {
val ta = task { taskA }
val tb = task { taskB }
val tc = task { taskC }
val td = taskD
(ta.join(), tb.join(), tc.join(), td)
}
}

View File

@ -1,126 +0,0 @@
/**
* Copyright (C) 2009-2015 Typesafe Inc. <http://www.typesafe.com>
*/
package actorbintree
import akka.actor.{ActorRef, ActorSystem, Props, actorRef2Scala, scala2ActorRef}
import akka.testkit.{ImplicitSender, TestKit, TestProbe}
import org.junit.Test
import org.junit.Assert._
import scala.util.Random
import scala.concurrent.duration._
class BinaryTreeSuite extends TestKit(ActorSystem("BinaryTreeSuite")) with ImplicitSender {
import actorbintree.BinaryTreeSet._
def receiveN(requester: TestProbe, ops: Seq[Operation], expectedReplies: Seq[OperationReply]): Unit =
requester.within(5.seconds) {
val repliesUnsorted = for (i <- 1 to ops.size) yield try {
requester.expectMsgType[OperationReply]
} catch {
case ex: Throwable if ops.size > 10 => sys.error(s"failure to receive confirmation $i/${ops.size}\n$ex")
case ex: Throwable => sys.error(s"failure to receive confirmation $i/${ops.size}\nRequests:" + ops.mkString("\n ", "\n ", "") + s"\n$ex")
}
val replies = repliesUnsorted.sortBy(_.id)
if (replies != expectedReplies) {
val pairs = (replies zip expectedReplies).zipWithIndex filter (x => x._1._1 != x._1._2)
fail("unexpected replies:" + pairs.map(x => s"at index ${x._2}: got ${x._1._1}, expected ${x._1._2}").mkString("\n ", "\n ", ""))
}
}
def verify(probe: TestProbe, ops: Seq[Operation], expected: Seq[OperationReply]): Unit = {
val topNode = system.actorOf(Props[BinaryTreeSet])
ops foreach { op =>
topNode ! op
}
receiveN(probe, ops, expected)
// the grader also verifies that enough actors are created
}
@Test def `proper inserts and lookups (5pts)`(): Unit = {
val topNode = system.actorOf(Props[BinaryTreeSet])
topNode ! Contains(testActor, id = 1, 1)
expectMsg(ContainsResult(1, false))
topNode ! Insert(testActor, id = 2, 1)
topNode ! Contains(testActor, id = 3, 1)
expectMsg(OperationFinished(2))
expectMsg(ContainsResult(3, true))
()
}
@Test def `instruction example (5pts)`(): Unit = {
val requester = TestProbe()
val requesterRef = requester.ref
val ops = List(
Insert(requesterRef, id=100, 1),
Contains(requesterRef, id=50, 2),
Remove(requesterRef, id=10, 1),
Insert(requesterRef, id=20, 2),
Contains(requesterRef, id=80, 1),
Contains(requesterRef, id=70, 2)
)
val expectedReplies = List(
OperationFinished(id=10),
OperationFinished(id=20),
ContainsResult(id=50, false),
ContainsResult(id=70, true),
ContainsResult(id=80, false),
OperationFinished(id=100)
)
verify(requester, ops, expectedReplies)
}
@Test def `behave identically to built-in set (includes GC) (40pts)`(): Unit = {
val rnd = new Random()
def randomOperations(requester: ActorRef, count: Int): Seq[Operation] = {
def randomElement: Int = rnd.nextInt(100)
def randomOperation(requester: ActorRef, id: Int): Operation = rnd.nextInt(4) match {
case 0 => Insert(requester, id, randomElement)
case 1 => Insert(requester, id, randomElement)
case 2 => Contains(requester, id, randomElement)
case 3 => Remove(requester, id, randomElement)
}
for (seq <- 0 until count) yield randomOperation(requester, seq)
}
def referenceReplies(operations: Seq[Operation]): Seq[OperationReply] = {
var referenceSet = Set.empty[Int]
def replyFor(op: Operation): OperationReply = op match {
case Insert(_, seq, elem) =>
referenceSet = referenceSet + elem
OperationFinished(seq)
case Remove(_, seq, elem) =>
referenceSet = referenceSet - elem
OperationFinished(seq)
case Contains(_, seq, elem) =>
ContainsResult(seq, referenceSet(elem))
}
for (op <- operations) yield replyFor(op)
}
val requester = TestProbe()
val topNode = system.actorOf(Props[BinaryTreeSet])
val count = 1000
val ops = randomOperations(requester.ref, count)
val expectedReplies = referenceReplies(ops)
ops foreach { op =>
topNode ! op
if (rnd.nextDouble() < 0.1) topNode ! GC
}
receiveN(requester, ops, expectedReplies)
}
}

View File

@ -0,0 +1,138 @@
package barneshut
import java.util.concurrent._
import scala.collection._
import scala.math._
import scala.collection.parallel._
import barneshut.conctrees.ConcBuffer
import org.junit._
import org.junit.Assert.{assertEquals, fail}
class BarnesHutSuite {
// test cases for quad tree
import FloatOps._
@Test def `Empty: center of mass should be the center of the cell`: Unit = {
val quad = Empty(51f, 46.3f, 5f)
assert(quad.massX == 51f, s"${quad.massX} should be 51f")
assert(quad.massY == 46.3f, s"${quad.massY} should be 46.3f")
}
@Test def `Empty: mass should be 0`: Unit = {
val quad = Empty(51f, 46.3f, 5f)
assert(quad.mass == 0f, s"${quad.mass} should be 0f")
}
@Test def `Empty: total should be 0`: Unit = {
val quad = Empty(51f, 46.3f, 5f)
assert(quad.total == 0, s"${quad.total} should be 0")
}
@Test def `Leaf with 1 body`: Unit = {
val b = new Body(123f, 18f, 26f, 0f, 0f)
val quad = Leaf(17.5f, 27.5f, 5f, Seq(b))
assert(quad.mass ~= 123f, s"${quad.mass} should be 123f")
assert(quad.massX ~= 18f, s"${quad.massX} should be 18f")
assert(quad.massY ~= 26f, s"${quad.massY} should be 26f")
assert(quad.total == 1, s"${quad.total} should be 1")
}
@Test def `Fork with 3 empty quadrants and 1 leaf (nw)`: Unit = {
val b = new Body(123f, 18f, 26f, 0f, 0f)
val nw = Leaf(17.5f, 27.5f, 5f, Seq(b))
val ne = Empty(22.5f, 27.5f, 5f)
val sw = Empty(17.5f, 32.5f, 5f)
val se = Empty(22.5f, 32.5f, 5f)
val quad = Fork(nw, ne, sw, se)
assert(quad.centerX == 20f, s"${quad.centerX} should be 20f")
assert(quad.centerY == 30f, s"${quad.centerY} should be 30f")
assert(quad.mass ~= 123f, s"${quad.mass} should be 123f")
assert(quad.massX ~= 18f, s"${quad.massX} should be 18f")
assert(quad.massY ~= 26f, s"${quad.massY} should be 26f")
assert(quad.total == 1, s"${quad.total} should be 1")
}
@Test def `Empty.insert(b) should return a Leaf with only that body (2pts)`: Unit = {
val quad = Empty(51f, 46.3f, 5f)
val b = new Body(3f, 54f, 46f, 0f, 0f)
val inserted = quad.insert(b)
inserted match {
case Leaf(centerX, centerY, size, bodies) =>
assert(centerX == 51f, s"$centerX should be 51f")
assert(centerY == 46.3f, s"$centerY should be 46.3f")
assert(size == 5f, s"$size should be 5f")
assert(bodies == Seq(b), s"$bodies should contain only the inserted body")
case _ =>
fail("Empty.insert() should have returned a Leaf, was $inserted")
}
}
// test cases for Body
@Test def `Body.updated should do nothing for Empty quad trees`: Unit = {
val b1 = new Body(123f, 18f, 26f, 0f, 0f)
val body = b1.updated(Empty(50f, 60f, 5f))
assertEquals(0f, body.xspeed, precisionThreshold)
assertEquals(0f, body.yspeed, precisionThreshold)
}
@Test def `Body.updated should take bodies in a Leaf into account (2pts)`: Unit = {
val b1 = new Body(123f, 18f, 26f, 0f, 0f)
val b2 = new Body(524.5f, 24.5f, 25.5f, 0f, 0f)
val b3 = new Body(245f, 22.4f, 41f, 0f, 0f)
val quad = Leaf(15f, 30f, 20f, Seq(b2, b3))
val body = b1.updated(quad)
assert(body.xspeed ~= 12.587037f)
assert(body.yspeed ~= 0.015557117f)
}
// test cases for sector matrix
@Test def `'SectorMatrix.+=' should add a body at (25,47) to the correct bucket of a sector matrix of size 96 (2pts)`: Unit = {
val body = new Body(5, 25, 47, 0.1f, 0.1f)
val boundaries = new Boundaries()
boundaries.minX = 1
boundaries.minY = 1
boundaries.maxX = 97
boundaries.maxY = 97
val sm = new SectorMatrix(boundaries, SECTOR_PRECISION)
sm += body
val res = sm(2, 3).size == 1 && sm(2, 3).find(_ == body).isDefined
assert(res, s"Body not found in the right sector")
}
@Rule def individualTestTimeout = new org.junit.rules.Timeout(10 * 1000)
}
object FloatOps {
val precisionThreshold = 1e-4
/** Floating comparison: assert(float ~= 1.7f). */
implicit class FloatOps(val self: Float) extends AnyVal {
def ~=(that: Float): Boolean =
abs(self - that) < precisionThreshold
}
/** Long floating comparison: assert(double ~= 1.7). */
implicit class DoubleOps(val self: Double) extends AnyVal {
def ~=(that: Double): Boolean =
abs(self - that) < precisionThreshold
}
/** Floating sequences comparison: assert(floatSeq ~= Seq(0.5f, 1.7f). */
implicit class FloatSequenceOps(val self: Seq[Float]) extends AnyVal {
def ~=(that: Seq[Float]): Boolean =
self.size == that.size &&
self.zip(that).forall { case (a, b) =>
abs(a - b) < precisionThreshold
}
}
}