Compare commits

..

No commits in common. "actorbintree" and "lockfree" have entirely different histories.

18 changed files with 921 additions and 336 deletions

View File

@ -25,7 +25,7 @@ grade:
tags:
- cs206
image:
name: smarter3/moocs:reactive-actorbintree-2020-04-15
name: smarter3/moocs:concpar-lockfree-2020-03-24-2
entrypoint: [""]
allow_failure: true
before_script:

View File

@ -1,24 +1,11 @@
course := "reactive"
assignment := "actorbintree"
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
parallelExecution in Test := false
val akkaVersion = "2.6.0"
course := "concpar"
assignment := "lockfree"
scalaVersion := "0.23.0-bin-20200211-5b006fb-NIGHTLY"
scalacOptions ++= Seq(
"-feature",
"-deprecation",
"-encoding", "UTF-8",
"-unchecked",
"-language:implicitConversions"
)
scalacOptions ++= Seq("-language:implicitConversions", "-deprecation")
libraryDependencies ++= Seq(
"com.typesafe.akka" %% "akka-actor" % akkaVersion,
"com.typesafe.akka" %% "akka-testkit" % akkaVersion % Test,
"com.novocode" % "junit-interface" % "0.11" % Test
).map(_.withDottyCompat(scalaVersion.value))
testSuite := "actorbintree.BinaryTreeSuite"
libraryDependencies += "com.novocode" % "junit-interface" % "0.11" % Test
testOptions in Test += Tests.Argument(TestFrameworks.JUnit, "-a", "-v", "-s")
testSuite := "lockfree.SortedListSuite"

Binary file not shown.

View File

@ -1,189 +0,0 @@
/**
* Copyright (C) 2009-2013 Typesafe Inc. <http://www.typesafe.com>
*/
package actorbintree
import akka.actor._
import scala.collection.immutable.Queue
object BinaryTreeSet {
trait Operation {
def requester: ActorRef
def id: Int
def elem: Int
}
trait OperationReply {
def id: Int
}
/** Request with identifier `id` to insert an element `elem` into the tree.
* The actor at reference `requester` should be notified when this operation
* is completed.
*/
case class Insert(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request with identifier `id` to check whether an element `elem` is present
* in the tree. The actor at reference `requester` should be notified when
* this operation is completed.
*/
case class Contains(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request with identifier `id` to remove the element `elem` from the tree.
* The actor at reference `requester` should be notified when this operation
* is completed.
*/
case class Remove(requester: ActorRef, id: Int, elem: Int) extends Operation
/** Request to perform garbage collection */
case object GC
/** Holds the answer to the Contains request with identifier `id`.
* `result` is true if and only if the element is present in the tree.
*/
case class ContainsResult(id: Int, result: Boolean) extends OperationReply
/** Message to signal successful completion of an insert or remove operation. */
case class OperationFinished(id: Int) extends OperationReply
}
class BinaryTreeSet extends Actor {
import BinaryTreeSet._
import BinaryTreeNode._
def createRoot: ActorRef = context.actorOf(BinaryTreeNode.props(0, initiallyRemoved = true))
var root = createRoot
// optional
var pendingQueue = Queue.empty[Operation]
// optional
def receive = normal
// optional
/** Accepts `Operation` and `GC` messages. */
val normal: Receive = {
case op:Operation => root ! op
case GC => {
val newRoot = createRoot;
root ! CopyTo(newRoot)
context.become(garbageCollecting(newRoot))
}
}
// optional
/** Handles messages while garbage collection is performed.
* `newRoot` is the root of the new binary tree where we want to copy
* all non-removed elements into.
*/
def garbageCollecting(newRoot: ActorRef): Receive = {
case op:Operation => pendingQueue = pendingQueue.enqueue(op)
case CopyFinished =>
pendingQueue.foreach(newRoot ! _) //foreach preserves order of a queue (same as dequeueing)
root ! PoisonPill //Will also stop all of its children
pendingQueue = Queue.empty
root = newRoot;
context.become(normal)
//Ignore GC messages here
}
}
object BinaryTreeNode {
trait Position
case object Left extends Position
case object Right extends Position
case class CopyTo(treeNode: ActorRef)
case object CopyFinished
def props(elem: Int, initiallyRemoved: Boolean) = Props(classOf[BinaryTreeNode], elem, initiallyRemoved)
}
class BinaryTreeNode(val elem: Int, initiallyRemoved: Boolean) extends Actor {
import BinaryTreeNode._
import BinaryTreeSet._
var subtrees = Map[Position, ActorRef]()
var removed = initiallyRemoved
// optional
def receive = normal
def goDownTo(elem : Int) : Position = if(elem < this.elem) Left else Right
// optional
/** Handles `Operation` messages and `CopyTo` requests. */
val normal: Receive = {
case Insert (requester, id, elem) =>
if(elem == this.elem && !removed){
requester ! OperationFinished(id)
}else{
val nextPos = goDownTo(elem)
subtrees get nextPos match{
case Some(node) => node ! Insert(requester, id, elem)
case None => {
val newActorSubtree = (nextPos, context.actorOf(BinaryTreeNode.props(elem, false)))
subtrees = subtrees + newActorSubtree
requester ! OperationFinished(id);
}
}
}
case Contains(requester, id, elem) =>
if(elem == this.elem && !removed)
requester ! ContainsResult(id, true)
else{
//Need to search subtrees
subtrees get goDownTo(elem) match{
case Some(node) => node ! Contains(requester, id, elem)
case None => requester ! ContainsResult(id, false)
}
}
case Remove (requester, id, elem) =>
if(elem == this.elem && !removed){
removed = true
requester ! OperationFinished(id)
}else{
subtrees get goDownTo(elem) match{
case Some(node) => node ! Remove(requester, id, elem)
case None => requester ! OperationFinished(id) // (elem isn't in the tree)
}
}
case CopyTo(newRoot) =>
//We are already done, nothing to do
if(removed && subtrees.isEmpty) context.parent ! CopyFinished
else{
if(!removed) newRoot ! Insert(self, elem, elem)
subtrees.values foreach(_ ! CopyTo(newRoot)) //Copy subtrees elems
//val insertConfirmed = if(removed) true else false, hence we can simply pass removed
context.become(copying(subtrees.values.toSet, removed))
}
}
// optional
/** `expected` is the set of ActorRefs whose replies we are waiting for,
* `insertConfirmed` tracks whether the copy of this node to the new tree has been confirmed.
*/
def copying(expected: Set[ActorRef], insertConfirmed: Boolean): Receive = {
//To catch the insert of this node into the new tree beeing finished
case OperationFinished(_) => {
if(expected.isEmpty) context.parent ! CopyFinished
else context.become(copying(expected, true))
}
case CopyFinished => {
val newExp = expected-sender
if(insertConfirmed && newExp.isEmpty){
context.parent ! CopyFinished
}else{
context.become(copying(newExp, insertConfirmed))
}
}
}
}

View File

@ -0,0 +1,32 @@
package lockfree
import instrumentation.LockFreeMonitor
import scala.collection._
import java.util.concurrent.atomic._
abstract class AbstractSortedList extends LockFreeMonitor {
def createNode(value: Int, tail: Option[Node], isHead: Boolean = false) = new Node(value, tail) {
override def toString = if(isHead) "HEAD" else super.toString
}
def firstNode: Option[Node]
def findNodeWithPrev(pred: Int => Boolean): (Node, Option[Node])
def insert(e: Int): Unit
def delete(e: Int): Boolean
def toList: List[Int] = {
var curr = firstNode
var list = List[Int]()
while(curr.nonEmpty) {
if(!curr.get.deleted) list :+= curr.get.value
curr = curr.get.next
}
list
}
}

View File

@ -0,0 +1,25 @@
package lockfree
import java.util.concurrent.atomic._
abstract class AbstractAtomicVariable[T] {
def get: T
def compareAndSet(expect: T, newval: T) : Boolean
}
class AtomicVariable[T](initial: T) extends AbstractAtomicVariable[T] {
private val atomic = new AtomicReference[T](initial)
override def get: T = atomic.get()
override def compareAndSet(expected: T, value: T): Boolean = {
val current = atomic.get
if (current == expected) {
atomic.compareAndSet(current, value)
}
else {
false
}
}
}

View File

@ -0,0 +1,23 @@
package lockfree
abstract class Node(val value: Int, initTail: Option[Node]) {
// The type of mutable state held by node.
type State = (Option[Node], Boolean) //Boolean flag indicates whether THIS has been deleted or not !! not next
// The initial mutable state of the node.
def initialState: State = (initTail, false);
// The atomic variable that holds the state.
val atomicState: AbstractAtomicVariable[State] = new AtomicVariable[State](initialState)
// Function to read the next node from the state.
def next: Option[Node] = atomicState.get._1
// Should return true if the node was marked as deleted.
def deleted: Boolean = atomicState.get._2
// Should mark the node as deleted.
def mark: Boolean = atomicState.compareAndSet((next, false), (next, true))
}

View File

@ -0,0 +1,54 @@
package lockfree
import scala.annotation.tailrec
class SortedList extends AbstractSortedList {
// The sentinel node at the head.
private val _head: Node = createNode(0, None, isHead = true)
// The first logical node is referenced by the head.
def firstNode: Option[Node] = _head.next
// Finds the first node whose value satisfies the predicate.
// Returns the predecessor of the node and the node.
def findNodeWithPrev(pred: Int => Boolean): (Node, Option[Node]) = {
def findRec(prev : Node, curr : Option[Node]) : (Node, Option[Node]) = {
(prev, curr) match {
case (last, None) => (last, None);
case (_, Some(node)) =>
if(node.deleted) {
prev.atomicState.compareAndSet((curr, false), (node.next, false))
findNodeWithPrev(pred)
}else if(pred(node.value)) (prev, curr)
else findRec(node, node.next)
}
}
findRec(_head, _head.next)
}
// Insert an element in the list.
def insert(e: Int): Unit = {
val (pred, next) = findNodeWithPrev(_ >= e);
val n = createNode(e, next)
if(!pred.atomicState.compareAndSet((next, false), (Some(n), false))) insert(e)
}
// Checks if the list contains an element.
def contains(e: Int): Boolean = {
findNodeWithPrev(_ == e)._2 match {
case None => false
case _ => true;
}
}
// Delete an element from the list.
// Should only delete one element when multiple occurences are present.
def delete(e: Int): Boolean = {
val (pred, next) = findNodeWithPrev(_ == e)
next match{
case None => false
case Some(x) => if(x.mark) true else delete(e)
}
}
}

View File

@ -0,0 +1,83 @@
package lockfree
import scala.util.Random
import instrumentation.Stats._
object SortingBenchmarks extends App {
val items = 2500
val threads = 12
val insertions = List.fill(items)(Random.nextInt)
val deletions = Random.shuffle(insertions)
val parInsertions = parBuckets(threads, insertions)_
val parDeletions = parBuckets(threads, deletions)_
private class SynchronizedSortedList extends SortedList {
val lock = new Object
def syncTraverse(stop: Int => Boolean) = lock.synchronized(super.findNodeWithPrev(stop))
def syncInsert(e: Int) = lock.synchronized(super.insert(e))
def syncDelete(e: Int) = lock.synchronized(super.delete(e))
}
val syncSeqTime = {
val l = new SynchronizedSortedList
withTime {
insertions.foreach(l.syncInsert)
deletions.foreach(l.syncDelete)
}._2
}
val syncParTime = {
val l = new SynchronizedSortedList
withTime {
val ops = parInsertions(l.syncInsert) ++ parDeletions(l.syncDelete)
ops.foreach(_.start)
ops.foreach(_.join)
}._2
}
val fineSeqTime = {
val l = new SortedList
withTime {
insertions.foreach(l.insert)
deletions.foreach(l.delete)
}._2
}
val fineParTime = {
val l = new SortedList
withTime {
val ops = parInsertions(l.insert) ++ parDeletions(l.delete)
ops.foreach(_.start)
ops.foreach(_.join)
}._2
}
println(
s"""
|***** Results *****
|
|synchronized:
| - sequential: $syncSeqTime
| - parallel: $syncParTime
| - speedup: ${syncSeqTime.toFloat / syncParTime}
|
|fine-grained:
| - sequential: $fineSeqTime
| - parallel: $fineParTime
| - speedup: ${fineSeqTime.toFloat / fineParTime}
|
|synchronized/fine-grained:
| - speedup: ${syncParTime.toFloat / fineParTime}
|
""".stripMargin)
def parBuckets(threadCount: Int, items: List[Int])(op: Int => Any): List[Thread] =
items.grouped(items.size / threadCount).toList.map { bucket =>
new Thread {
override def run(): Unit =
bucket.foreach(op)
}
}
}

View File

@ -0,0 +1,72 @@
package lockfree.instrumentation
trait MockedMonitor extends Monitor {
def scheduler: Scheduler
// Can be overriden.
override def waitDefault() = {
scheduler.log("wait")
scheduler updateThreadState Wait(this, scheduler.threadLocks.tail)
}
override def synchronizedDefault[T](toExecute: =>T): T = {
scheduler.log("synchronized check")
val prevLocks = scheduler.threadLocks
scheduler updateThreadState Sync(this, prevLocks) // If this belongs to prevLocks, should just continue.
scheduler.log("synchronized -> enter")
try {
toExecute
} finally {
scheduler updateThreadState Running(prevLocks)
scheduler.log("synchronized -> out")
}
}
override def notifyDefault() = {
scheduler mapOtherStates {
state => state match {
case Wait(lockToAquire, locks) if lockToAquire == this => SyncUnique(this, state.locks)
case e => e
}
}
scheduler.log("notify")
}
override def notifyAllDefault() = {
scheduler mapOtherStates {
state => state match {
case Wait(lockToAquire, locks) if lockToAquire == this => Sync(this, state.locks)
case SyncUnique(lockToAquire, locks) if lockToAquire == this => Sync(this, state.locks)
case e => e
}
}
scheduler.log("notifyAll")
}
}
trait LockFreeMonitor extends Monitor {
override def waitDefault() = {
throw new Exception("Please use lock-free structures and do not use wait()")
}
override def synchronizedDefault[T](toExecute: =>T): T = {
throw new Exception("Please use lock-free structures and do not use synchronized()")
}
override def notifyDefault() = {
throw new Exception("Please use lock-free structures and do not use notify()")
}
override def notifyAllDefault() = {
throw new Exception("Please use lock-free structures and do not use notifyAll()")
}
}
abstract class ThreadState {
def locks: Seq[AnyRef]
}
trait CanContinueIfAcquiresLock extends ThreadState {
def lockToAquire: AnyRef
}
case object Start extends ThreadState { def locks: Seq[AnyRef] = Seq.empty }
case object End extends ThreadState { def locks: Seq[AnyRef] = Seq.empty }
case class Wait(lockToAquire: AnyRef, locks: Seq[AnyRef]) extends ThreadState
case class SyncUnique(lockToAquire: AnyRef, locks: Seq[AnyRef]) extends ThreadState with CanContinueIfAcquiresLock
case class Sync(lockToAquire: AnyRef, locks: Seq[AnyRef]) extends ThreadState with CanContinueIfAcquiresLock
case class Running(locks: Seq[AnyRef]) extends ThreadState
case class VariableReadWrite(locks: Seq[AnyRef]) extends ThreadState

View File

@ -0,0 +1,23 @@
package lockfree.instrumentation
class Dummy
trait Monitor {
implicit val dummy: Dummy = new Dummy
def wait()(implicit i: Dummy) = waitDefault()
def synchronized[T](e: => T)(implicit i: Dummy) = synchronizedDefault(e)
def notify()(implicit i: Dummy) = notifyDefault()
def notifyAll()(implicit i: Dummy) = notifyAllDefault()
private val lock = new AnyRef
// Can be overriden.
def waitDefault(): Unit = lock.wait()
def synchronizedDefault[T](toExecute: =>T): T = lock.synchronized(toExecute)
def notifyDefault(): Unit = lock.notify()
def notifyAllDefault(): Unit = lock.notifyAll()
}

View File

@ -0,0 +1,35 @@
package lockfree.instrumentation
import scala.annotation.tailrec
import lockfree._
import java.util.concurrent.atomic._
class SchedulableAtomicVariable[T](initial: T, scheduler: Scheduler, self: Node) extends AbstractAtomicVariable[T] {
private val proxied: AtomicVariable[T] = new AtomicVariable[T](initial)
override def get: T = scheduler.exec {
proxied.get
} ( s"", Some(res => s"$self: get $res") )
override def compareAndSet(expect: T, newval: T): Boolean = {
scheduler.exec {
proxied.compareAndSet(expect, newval)
} (s"$self: compareAndSet expect = $expect, newval = $newval", Some(res => s"$self: Did it set? $res") )
}
}
class SchedulableNode(value: Int, initTail: Option[Node], val scheduler: Scheduler) extends Node(value, initTail) with LockFreeMonitor { self =>
override val atomicState: AbstractAtomicVariable[State] = new SchedulableAtomicVariable[State](initialState, scheduler, this)
override def toString: String =
String.format("Node(%s)#%02d", value.toString, new Integer(## % 100))
}
class SchedulableSortedList(val scheduler: Scheduler) extends SortedList with LockFreeMonitor {
override def createNode(value: Int, tail: Option[Node], isHead: Boolean) = new SchedulableNode(value, tail, scheduler) {
override def toString = if(isHead) "HEAD" else super.toString
}
}

View File

@ -0,0 +1,304 @@
package lockfree.instrumentation
import java.util.concurrent._;
import scala.concurrent.duration._
import scala.collection.mutable._
import Stats._
import java.util.concurrent.atomic.AtomicInteger
sealed abstract class Result
case class RetVal(rets: List[Any]) extends Result
case class Except(msg: String, stackTrace: Array[StackTraceElement]) extends Result
case class Timeout(msg: String) extends Result
/**
* A class that maintains schedule and a set of thread ids.
* The schedules are advanced after an operation of a SchedulableBuffer is performed.
* Note: the real schedule that is executed may deviate from the input schedule
* due to the adjustments that had to be made for locks
*/
class Scheduler(sched: List[Int]) {
val maxOps = 500 // a limit on the maximum number of operations the code is allowed to perform
private var schedule = sched
private var numThreads = 0
private val realToFakeThreadId = Map[Long, Int]()
private val opLog = ListBuffer[String]() // a mutable list (used for efficient concat)
private val threadStates = Map[Int, ThreadState]()
/**
* Runs a set of operations in parallel as per the schedule.
* Each operation may consist of many primitive operations like reads or writes
* to shared data structure each of which should be executed using the function `exec`.
* @timeout in milliseconds
* @return true - all threads completed on time, false -some tests timed out.
*/
def runInParallel(timeout: Long, ops: List[() => Any]): Result = {
numThreads = ops.length
val threadRes = Array.fill(numThreads) { None: Any }
var exception: Option[Except] = None
val syncObject = new Object()
var completed = new AtomicInteger(0)
// create threads
val threads = ops.zipWithIndex.map {
case (op, i) =>
new Thread(new Runnable() {
def run(): Unit = {
val fakeId = i + 1
setThreadId(fakeId)
try {
updateThreadState(Start)
val res = op()
updateThreadState(End)
threadRes(i) = res
// notify the master thread if all threads have completed
if (completed.incrementAndGet() == ops.length) {
syncObject.synchronized { syncObject.notifyAll() }
}
} catch {
case e: Throwable if exception != None => // do nothing here and silently fail
case e: Throwable =>
log(s"throw ${e.toString}")
exception = Some(Except(s"Thread $fakeId crashed on the following schedule: \n" + opLog.mkString("\n"),
e.getStackTrace))
syncObject.synchronized { syncObject.notifyAll() }
//println(s"$fakeId: ${e.toString}")
//Runtime.getRuntime().halt(0) //exit the JVM and all running threads (no other way to kill other threads)
}
}
})
}
// start all threads
threads.foreach(_.start())
// wait for all threads to complete, or for an exception to be thrown, or for the time out to expire
var remTime = timeout
syncObject.synchronized {
timed { if(completed.get() != ops.length) syncObject.wait(timeout) } { time => remTime -= time }
}
if (exception.isDefined) {
exception.get
} else if (remTime <= 1) { // timeout ? using 1 instead of zero to allow for some errors
Timeout(opLog.mkString("\n"))
} else {
// every thing executed normally
RetVal(threadRes.toList)
}
}
// Updates the state of the current thread
def updateThreadState(state: ThreadState): Unit = {
val tid = threadId
synchronized {
threadStates(tid) = state
}
state match {
case Sync(lockToAquire, locks) =>
if (locks.indexOf(lockToAquire) < 0) waitForTurn else {
// Re-aqcuiring the same lock
updateThreadState(Running(lockToAquire +: locks))
}
case Start => waitStart()
case End => removeFromSchedule(tid)
case Running(_) =>
case _ => waitForTurn // Wait, SyncUnique, VariableReadWrite
}
}
def waitStart(): Unit = {
//while (threadStates.size < numThreads) {
//Thread.sleep(1)
//}
synchronized {
if (threadStates.size < numThreads) {
wait()
} else {
notifyAll()
}
}
}
def threadLocks = {
synchronized {
threadStates(threadId).locks
}
}
def threadState = {
synchronized {
threadStates(threadId)
}
}
def mapOtherStates(f: ThreadState => ThreadState) = {
val exception = threadId
synchronized {
for (k <- threadStates.keys if k != exception) {
threadStates(k) = f(threadStates(k))
}
}
}
def log(str: String) = {
if((realToFakeThreadId contains Thread.currentThread().getId())) {
val space = (" " * ((threadId - 1) * 2))
val s = space + threadId + ":" + "\n".r.replaceAllIn(str, "\n" + space + " ")
opLog += s
}
}
/**
* Executes a read or write operation to a global data structure as per the given schedule
* @param msg a message corresponding to the operation that will be logged
*/
def exec[T](primop: => T)(msg: => String, postMsg: => Option[T => String] = None): T = {
if(! (realToFakeThreadId contains Thread.currentThread().getId())) {
primop
} else {
updateThreadState(VariableReadWrite(threadLocks))
val m = msg
if(m != "") log(m)
if (opLog.size > maxOps)
throw new Exception(s"Total number of reads/writes performed by threads exceed $maxOps. A possible deadlock!")
val res = primop
postMsg match {
case Some(m) => log(m(res))
case None =>
}
res
}
}
private def setThreadId(fakeId: Int) = synchronized {
realToFakeThreadId(Thread.currentThread.getId) = fakeId
}
def threadId =
try {
realToFakeThreadId(Thread.currentThread().getId())
} catch {
case e: NoSuchElementException =>
throw new Exception("You are accessing shared variables in the constructor. This is not allowed. The variables are already initialized!")
}
private def isTurn(tid: Int) = synchronized {
(!schedule.isEmpty && schedule.head != tid)
}
def canProceed(): Boolean = {
val tid = threadId
canContinue match {
case Some((i, state)) if i == tid =>
//println(s"$tid: Runs ! Was in state $state")
canContinue = None
state match {
case Sync(lockToAquire, locks) => updateThreadState(Running(lockToAquire +: locks))
case SyncUnique(lockToAquire, locks) =>
mapOtherStates {
_ match {
case SyncUnique(lockToAquire2, locks2) if lockToAquire2 == lockToAquire => Wait(lockToAquire2, locks2)
case e => e
}
}
updateThreadState(Running(lockToAquire +: locks))
case VariableReadWrite(locks) => updateThreadState(Running(locks))
}
true
case Some((i, state)) =>
//println(s"$tid: not my turn but $i !")
false
case None =>
false
}
}
var threadPreference = 0 // In the case the schedule is over, which thread should have the preference to execute.
/** returns true if the thread can continue to execute, and false otherwise */
def decide(): Option[(Int, ThreadState)] = {
if (!threadStates.isEmpty) { // The last thread who enters the decision loop takes the decision.
//println(s"$threadId: I'm taking a decision")
if (threadStates.values.forall { case e: Wait => true case _ => false }) {
val waiting = threadStates.keys.map(_.toString).mkString(", ")
val s = if (threadStates.size > 1) "s" else ""
val are = if (threadStates.size > 1) "are" else "is"
throw new Exception(s"Deadlock: Thread$s $waiting $are waiting but all others have ended and cannot notify them.")
} else {
// Threads can be in Wait, Sync, SyncUnique, and VariableReadWrite mode.
// Let's determine which ones can continue.
val notFree = threadStates.collect { case (id, state) => state.locks }.flatten.toSet
val threadsNotBlocked = threadStates.toSeq.filter {
case (id, v: VariableReadWrite) => true
case (id, v: CanContinueIfAcquiresLock) => !notFree(v.lockToAquire) || (v.locks contains v.lockToAquire)
case _ => false
}
if (threadsNotBlocked.isEmpty) {
val waiting = threadStates.keys.map(_.toString).mkString(", ")
val s = if (threadStates.size > 1) "s" else ""
val are = if (threadStates.size > 1) "are" else "is"
val whoHasLock = threadStates.toSeq.flatMap { case (id, state) => state.locks.map(lock => (lock, id)) }.toMap
val reason = threadStates.collect {
case (id, state: CanContinueIfAcquiresLock) if !notFree(state.lockToAquire) =>
s"Thread $id is waiting on lock ${state.lockToAquire} held by thread ${whoHasLock(state.lockToAquire)}"
}.mkString("\n")
throw new Exception(s"Deadlock: Thread$s $waiting are interlocked. Indeed:\n$reason")
} else if (threadsNotBlocked.size == 1) { // Do not consume the schedule if only one thread can execute.
Some(threadsNotBlocked(0))
} else {
val next = schedule.indexWhere(t => threadsNotBlocked.exists { case (id, state) => id == t })
if (next != -1) {
//println(s"$threadId: schedule is $schedule, next chosen is ${schedule(next)}")
val chosenOne = schedule(next) // TODO: Make schedule a mutable list.
schedule = schedule.take(next) ++ schedule.drop(next + 1)
Some((chosenOne, threadStates(chosenOne)))
} else {
threadPreference = (threadPreference + 1) % threadsNotBlocked.size
val chosenOne = threadsNotBlocked(threadPreference) // Maybe another strategy
Some(chosenOne)
//threadsNotBlocked.indexOf(threadId) >= 0
/*
val tnb = threadsNotBlocked.map(_._1).mkString(",")
val s = if (schedule.isEmpty) "empty" else schedule.mkString(",")
val only = if (schedule.isEmpty) "" else " only"
throw new Exception(s"The schedule is $s but$only threads ${tnb} can continue")*/
}
}
}
} else canContinue
}
/**
* This will be called before a schedulable operation begins.
* This should not use synchronized
*/
var numThreadsWaiting = new AtomicInteger(0)
//var waitingForDecision = Map[Int, Option[Int]]() // Mapping from thread ids to a number indicating who is going to make the choice.
var canContinue: Option[(Int, ThreadState)] = None // The result of the decision thread Id of the thread authorized to continue.
private def waitForTurn = {
synchronized {
if (numThreadsWaiting.incrementAndGet() == threadStates.size) {
canContinue = decide()
notifyAll()
}
//waitingForDecision(threadId) = Some(numThreadsWaiting)
//println(s"$threadId Entering waiting with ticket number $numThreadsWaiting/${waitingForDecision.size}")
while (!canProceed()) wait()
}
numThreadsWaiting.decrementAndGet()
}
/**
* To be invoked when a thread is about to complete
*/
private def removeFromSchedule(fakeid: Int) = synchronized {
//println(s"$fakeid: I'm taking a decision because I finished")
schedule = schedule.filterNot(_ == fakeid)
threadStates -= fakeid
if (numThreadsWaiting.get() == threadStates.size) {
canContinue = decide()
notifyAll()
}
}
def getOperationLog() = opLog
}

View File

@ -0,0 +1,23 @@
/* Copyright 2009-2015 EPFL, Lausanne */
package lockfree.instrumentation
import java.lang.management._
/**
* A collection of methods that can be used to collect run-time statistics about Leon programs.
* This is mostly used to test the resources properties of Leon programs
*/
object Stats {
def timed[T](code: => T)(cont: Long => Unit): T = {
var t1 = System.currentTimeMillis()
val r = code
cont((System.currentTimeMillis() - t1))
r
}
def withTime[T](code: => T): (T, Long) = {
var t1 = System.currentTimeMillis()
val r = code
(r, (System.currentTimeMillis() - t1))
}
}

View File

@ -0,0 +1,124 @@
package lockfree.instrumentation
import scala.util.Random
import scala.collection.mutable.{Map => MutableMap}
import Stats._
object TestHelper {
val noOfSchedules = 10000 // set this to 100k during deployment
val readWritesPerThread = 20 // maximum number of read/writes possible in one thread
val contextSwitchBound = 10
val testTimeout = 240 // the total time out for a test in seconds
val schedTimeout = 15 // the total time out for execution of a schedule in secs
// Helpers
/*def testManySchedules(op1: => Any): Unit = testManySchedules(List(() => op1))
def testManySchedules(op1: => Any, op2: => Any): Unit = testManySchedules(List(() => op1, () => op2))
def testManySchedules(op1: => Any, op2: => Any, op3: => Any): Unit = testManySchedules(List(() => op1, () => op2, () => op3))
def testManySchedules(op1: => Any, op2: => Any, op3: => Any, op4: => Any): Unit = testManySchedules(List(() => op1, () => op2, () => op3, () => op4))*/
def testSequential[T](ops: Scheduler => Any)(assertions: T => (Boolean, String)) =
testManySchedules(1,
(sched: Scheduler) => {
(List(() => ops(sched)),
(res: List[Any]) => assertions(res.head.asInstanceOf[T]))
})
/**
* @numThreads number of threads
* @ops operations to be executed, one per thread
* @assertion as condition that will executed after all threads have completed (without exceptions)
* the arguments are the results of the threads
*/
def testManySchedules(numThreads: Int,
ops: Scheduler =>
(List[() => Any], // Threads
List[Any] => (Boolean, String)) // Assertion
) = {
var timeout = testTimeout * 1000L
val threadIds = (1 to numThreads)
//(1 to scheduleLength).flatMap(_ => threadIds).toList.permutations.take(noOfSchedules).foreach {
val schedules = (new ScheduleGenerator(numThreads)).schedules()
var schedsExplored = 0
schedules.takeWhile(_ => schedsExplored <= noOfSchedules && timeout > 0).foreach {
//case _ if timeout <= 0 => // break
case schedule =>
schedsExplored += 1
val schedr = new Scheduler(schedule)
//println("Exploring Sched: "+schedule)
val (threadOps, assertion) = ops(schedr)
if (threadOps.size != numThreads)
throw new IllegalStateException(s"Number of threads: $numThreads, do not match operations of threads: $threadOps")
timed { schedr.runInParallel(schedTimeout * 1000, threadOps) } { t => timeout -= t } match {
case Timeout(msg) =>
throw new java.lang.AssertionError("assertion failed\n"+"The schedule took too long to complete. A possible deadlock! \n"+msg)
case Except(msg, stkTrace) =>
val traceStr = "Thread Stack trace: \n"+stkTrace.map(" at "+_.toString).mkString("\n")
throw new java.lang.AssertionError("assertion failed\n"+msg+"\n"+traceStr)
case RetVal(threadRes) =>
// check the assertion
val (success, custom_msg) = assertion(threadRes)
if (!success) {
val msg = "The following schedule resulted in wrong results: \n" + custom_msg + "\n" + schedr.getOperationLog().mkString("\n")
throw new java.lang.AssertionError("Assertion failed: "+msg)
}
}
}
if (timeout <= 0) {
throw new java.lang.AssertionError("Test took too long to complete! Cannot check all schedules as your code is too slow!")
}
}
/**
* A schedule generator that is based on the context bound
*/
class ScheduleGenerator(numThreads: Int) {
val scheduleLength = readWritesPerThread * numThreads
val rands = (1 to scheduleLength).map(i => new Random(0xcafe * i)) // random numbers for choosing a thread at each position
def schedules(): LazyList[List[Int]] = {
var contextSwitches = 0
var contexts = List[Int]() // a stack of thread ids in the order of context-switches
val remainingOps = MutableMap[Int, Int]()
remainingOps ++= (1 to numThreads).map(i => (i, readWritesPerThread)) // num ops remaining in each thread
val liveThreads = (1 to numThreads).toSeq.toBuffer
/**
* Updates remainingOps and liveThreads once a thread is chosen for a position in the schedule
*/
def updateState(tid: Int): Unit = {
val remOps = remainingOps(tid)
if (remOps == 0) {
liveThreads -= tid
} else {
remainingOps += (tid -> (remOps - 1))
}
}
val schedule = rands.foldLeft(List[Int]()) {
case (acc, r) if contextSwitches < contextSwitchBound =>
val tid = liveThreads(r.nextInt(liveThreads.size))
contexts match {
case prev :: tail if prev != tid => // we have a new context switch here
contexts +:= tid
contextSwitches += 1
case prev :: tail =>
case _ => // init case
contexts +:= tid
}
updateState(tid)
acc :+ tid
case (acc, _) => // here context-bound has been reached so complete the schedule without any more context switches
if (!contexts.isEmpty) {
contexts = contexts.dropWhile(remainingOps(_) == 0)
}
val tid = contexts match {
case top :: tail => top
case _ => liveThreads(0) // here, there has to be threads that have not even started
}
updateState(tid)
acc :+ tid
}
schedule #:: schedules()
}
}
}

View File

@ -0,0 +1,19 @@
package lockfree.instrumentation
import scala.concurrent._
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global
object TestUtils {
def failsOrTimesOut[T](action: => T): Boolean = {
val asyncAction = Future {
action
}
try {
Await.result(asyncAction, 2000.millisecond)
} catch {
case _: Throwable => return true
}
return false
}
}

View File

@ -1,126 +0,0 @@
/**
* Copyright (C) 2009-2015 Typesafe Inc. <http://www.typesafe.com>
*/
package actorbintree
import akka.actor.{ActorRef, ActorSystem, Props, actorRef2Scala, scala2ActorRef}
import akka.testkit.{ImplicitSender, TestKit, TestProbe}
import org.junit.Test
import org.junit.Assert._
import scala.util.Random
import scala.concurrent.duration._
class BinaryTreeSuite extends TestKit(ActorSystem("BinaryTreeSuite")) with ImplicitSender {
import actorbintree.BinaryTreeSet._
def receiveN(requester: TestProbe, ops: Seq[Operation], expectedReplies: Seq[OperationReply]): Unit =
requester.within(5.seconds) {
val repliesUnsorted = for (i <- 1 to ops.size) yield try {
requester.expectMsgType[OperationReply]
} catch {
case ex: Throwable if ops.size > 10 => sys.error(s"failure to receive confirmation $i/${ops.size}\n$ex")
case ex: Throwable => sys.error(s"failure to receive confirmation $i/${ops.size}\nRequests:" + ops.mkString("\n ", "\n ", "") + s"\n$ex")
}
val replies = repliesUnsorted.sortBy(_.id)
if (replies != expectedReplies) {
val pairs = (replies zip expectedReplies).zipWithIndex filter (x => x._1._1 != x._1._2)
fail("unexpected replies:" + pairs.map(x => s"at index ${x._2}: got ${x._1._1}, expected ${x._1._2}").mkString("\n ", "\n ", ""))
}
}
def verify(probe: TestProbe, ops: Seq[Operation], expected: Seq[OperationReply]): Unit = {
val topNode = system.actorOf(Props[BinaryTreeSet])
ops foreach { op =>
topNode ! op
}
receiveN(probe, ops, expected)
// the grader also verifies that enough actors are created
}
@Test def `proper inserts and lookups (5pts)`(): Unit = {
val topNode = system.actorOf(Props[BinaryTreeSet])
topNode ! Contains(testActor, id = 1, 1)
expectMsg(ContainsResult(1, false))
topNode ! Insert(testActor, id = 2, 1)
topNode ! Contains(testActor, id = 3, 1)
expectMsg(OperationFinished(2))
expectMsg(ContainsResult(3, true))
()
}
@Test def `instruction example (5pts)`(): Unit = {
val requester = TestProbe()
val requesterRef = requester.ref
val ops = List(
Insert(requesterRef, id=100, 1),
Contains(requesterRef, id=50, 2),
Remove(requesterRef, id=10, 1),
Insert(requesterRef, id=20, 2),
Contains(requesterRef, id=80, 1),
Contains(requesterRef, id=70, 2)
)
val expectedReplies = List(
OperationFinished(id=10),
OperationFinished(id=20),
ContainsResult(id=50, false),
ContainsResult(id=70, true),
ContainsResult(id=80, false),
OperationFinished(id=100)
)
verify(requester, ops, expectedReplies)
}
@Test def `behave identically to built-in set (includes GC) (40pts)`(): Unit = {
val rnd = new Random()
def randomOperations(requester: ActorRef, count: Int): Seq[Operation] = {
def randomElement: Int = rnd.nextInt(100)
def randomOperation(requester: ActorRef, id: Int): Operation = rnd.nextInt(4) match {
case 0 => Insert(requester, id, randomElement)
case 1 => Insert(requester, id, randomElement)
case 2 => Contains(requester, id, randomElement)
case 3 => Remove(requester, id, randomElement)
}
for (seq <- 0 until count) yield randomOperation(requester, seq)
}
def referenceReplies(operations: Seq[Operation]): Seq[OperationReply] = {
var referenceSet = Set.empty[Int]
def replyFor(op: Operation): OperationReply = op match {
case Insert(_, seq, elem) =>
referenceSet = referenceSet + elem
OperationFinished(seq)
case Remove(_, seq, elem) =>
referenceSet = referenceSet - elem
OperationFinished(seq)
case Contains(_, seq, elem) =>
ContainsResult(seq, referenceSet(elem))
}
for (op <- operations) yield replyFor(op)
}
val requester = TestProbe()
val topNode = system.actorOf(Props[BinaryTreeSet])
val count = 1000
val ops = randomOperations(requester.ref, count)
val expectedReplies = referenceReplies(ops)
ops foreach { op =>
topNode ! op
if (rnd.nextDouble() < 0.1) topNode ! GC
}
receiveN(requester, ops, expectedReplies)
}
}

View File

@ -0,0 +1,96 @@
package lockfree
import scala.concurrent._
import scala.concurrent.duration._
import scala.collection.mutable.HashMap
import scala.util.Random
import org.junit._
import org.junit.Assert.assertEquals
import instrumentation.SchedulableSortedList
import instrumentation.TestHelper._
import instrumentation.TestUtils._
class SortedListSuite {
@Test def `Should work when 1, 2, and 3 are inserted sequentially`: Unit = {
val l = new SortedList
l.insert(1)
l.insert(2)
l.insert(3)
assertEquals(List(1, 2, 3), l.toList)
}
@Test def `Should work when 3, 2, and 1 are inserted sequentially`: Unit = {
val l = new SortedList
l.insert(3)
l.insert(2)
l.insert(1)
assertEquals(List(1, 2, 3), l.toList)
}
@Test def `Should work when duplicate elements are inserted sequentially`: Unit = {
val l = new SortedList
l.insert(0)
l.insert(0)
l.insert(2)
l.insert(2)
assertEquals(List(0, 0, 2, 2), l.toList)
}
@Test def `Should return [1,4,5] when from [1,2,3,5], a thread removes 3, 2 and then inserts 4`: Unit = {
val l = new SortedList
l.insert(1)
l.insert(2)
l.insert(3)
l.insert(5)
l.delete(3)
l.delete(2)
l.insert(4)
assertEquals(List(1, 4, 5), l.toList)
}
@Test def `Should work when a random list of 100 elements are inserted sequentially`: Unit = {
val rand = new Random()
val randvals = for(i <- 1 to 100) yield rand.nextInt()
val l = new SortedList
randvals.foreach { l.insert }
assertEquals(randvals.sorted, l.toList)
}
@Test def `Should insert in parallel 1, 2 and 3 in the list (0, 4)`: Unit = {
testManySchedules(3, sched => {
val sortedList = new SchedulableSortedList(sched)
sortedList.insert(0)
sortedList.insert(4)
((for(i <- 1 to 3) yield () => sortedList.insert(i)).toList,
results => {
val res = sortedList.toList
(res == List(0, 1, 2, 3, 4),
s"expected List(0, 1, 2, 3, 4), got $res")
})
})
}
@Test def `Should return List(true, false) when the first thread deletes 2 and the sec`: Unit = {
testManySchedules(2, sched => {
val sortedList = new SchedulableSortedList(sched)
sortedList.insert(1)
sortedList.insert(2)
sortedList.insert(3)
(List(() => sortedList.delete(2),
() => sortedList.delete(4)),
results => {
val res = sortedList.toList
val expected = List(1, 3)
if(res != expected) {
(false, s"expected the final list to be $expected, your 'delete' implementation returned ${res}")
} else if(results != List(true, false)) {
(false, s"expected threads to return List(true, false), your 'delete' implementation returned ${results}")
} else (true, "")
})
})
}
@Rule def individualTestTimeout = new org.junit.rules.Timeout(200 * 1000)
}