fix pylint
This commit is contained in:
parent
bf8fbf5234
commit
3243da72cd
@ -79,8 +79,6 @@ class PreprocessKitti:
|
|||||||
|
|
||||||
for name in self.names_gt:
|
for name in self.names_gt:
|
||||||
# Extract ground truth
|
# Extract ground truth
|
||||||
if name == '004223.txt':
|
|
||||||
aa = 5
|
|
||||||
path_gt = os.path.join(self.dir_gt, name)
|
path_gt = os.path.join(self.dir_gt, name)
|
||||||
basename, _ = os.path.splitext(name)
|
basename, _ = os.path.splitext(name)
|
||||||
boxes_gt = []
|
boxes_gt = []
|
||||||
@ -117,7 +115,7 @@ class PreprocessKitti:
|
|||||||
with open(os.path.join(self.dir_ann, basename + '.png.pifpaf.json'), 'r') as f:
|
with open(os.path.join(self.dir_ann, basename + '.png.pifpaf.json'), 'r') as f:
|
||||||
annotations = json.load(f)
|
annotations = json.load(f)
|
||||||
boxes, keypoints = self.preprocess_pif(annotations)
|
boxes, keypoints = self.preprocess_pif(annotations)
|
||||||
(inputs, xy_kps), (uv_kps, uv_boxes, _, _) = self.get_input_data(boxes, keypoints, kk)
|
(inputs, _), (uv_kps, uv_boxes, _, _) = self.get_input_data(boxes, keypoints, kk)
|
||||||
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
uv_boxes = []
|
uv_boxes = []
|
||||||
@ -138,10 +136,10 @@ class PreprocessKitti:
|
|||||||
boxes_gt.pop(idx_max)
|
boxes_gt.pop(idx_max)
|
||||||
dds.pop(idx_max)
|
dds.pop(idx_max)
|
||||||
|
|
||||||
with open(self.path_joints, 'w') as f:
|
with open(self.path_joints, 'w') as file:
|
||||||
json.dump(self.dic_jo, f)
|
json.dump(self.dic_jo, file)
|
||||||
with open(os.path.join(self.path_names), 'w') as f:
|
with open(os.path.join(self.path_names), 'w') as file:
|
||||||
json.dump(self.dic_names, f)
|
json.dump(self.dic_names, file)
|
||||||
for phase in ['train', 'val', 'test']:
|
for phase in ['train', 'val', 'test']:
|
||||||
print("Saved {} annotations for phase {}"
|
print("Saved {} annotations for phase {}"
|
||||||
.format(self.dic_cnt[phase], phase))
|
.format(self.dic_cnt[phase], phase))
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
import numpy as np
|
"""Extract joints annotations and match with nuScenes ground truths
|
||||||
|
"""
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
@ -7,6 +9,8 @@ import logging
|
|||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class PreprocessNuscenes:
|
class PreprocessNuscenes:
|
||||||
"""
|
"""
|
||||||
@ -48,7 +52,7 @@ class PreprocessNuscenes:
|
|||||||
# Initialize dicts to save joints for training
|
# Initialize dicts to save joints for training
|
||||||
self.dic_jo = {'train': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
self.dic_jo = {'train': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
||||||
clst=defaultdict(lambda: defaultdict(list))),
|
clst=defaultdict(lambda: defaultdict(list))),
|
||||||
'val': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
'val': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
||||||
clst=defaultdict(lambda: defaultdict(list))),
|
clst=defaultdict(lambda: defaultdict(list))),
|
||||||
'test': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
'test': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
||||||
clst=defaultdict(lambda: defaultdict(list)))
|
clst=defaultdict(lambda: defaultdict(list)))
|
||||||
@ -73,12 +77,12 @@ class PreprocessNuscenes:
|
|||||||
|
|
||||||
elif dataset == 'nuscenes_teaser':
|
elif dataset == 'nuscenes_teaser':
|
||||||
self.nusc = NuScenes(version='v1.0-trainval', dataroot=dir_nuscenes, verbose=True)
|
self.nusc = NuScenes(version='v1.0-trainval', dataroot=dir_nuscenes, verbose=True)
|
||||||
with open("splits/nuscenes_teaser_scenes.txt", "r") as ff:
|
with open("splits/nuscenes_teaser_scenes.txt", "r") as file:
|
||||||
teaser_scenes = ff.read().splitlines()
|
teaser_scenes = file.read().splitlines()
|
||||||
self.scenes = self.nusc.scene
|
self.scenes = self.nusc.scene
|
||||||
self.scenes = [scene for scene in self.scenes if scene['token'] in teaser_scenes]
|
self.scenes = [scene for scene in self.scenes if scene['token'] in teaser_scenes]
|
||||||
with open("splits/split_nuscenes_teaser.json", "r") as ff:
|
with open("splits/split_nuscenes_teaser.json", "r") as file:
|
||||||
dic_split = json.load(ff)
|
dic_split = json.load(file)
|
||||||
self.split_train = [scene['name'] for scene in self.scenes if scene['token'] in dic_split['train']]
|
self.split_train = [scene['name'] for scene in self.scenes if scene['token'] in dic_split['train']]
|
||||||
self.split_val = [scene['name'] for scene in self.scenes if scene['token'] in dic_split['val']]
|
self.split_val = [scene['name'] for scene in self.scenes if scene['token'] in dic_split['val']]
|
||||||
|
|
||||||
@ -147,11 +151,11 @@ class PreprocessNuscenes:
|
|||||||
exists = os.path.isfile(path_pif)
|
exists = os.path.isfile(path_pif)
|
||||||
|
|
||||||
if exists:
|
if exists:
|
||||||
with open(path_pif, 'r') as f:
|
with open(path_pif, 'r') as file:
|
||||||
annotations = json.load(f)
|
annotations = json.load(file)
|
||||||
|
|
||||||
boxes, keypoints = self.preprocess_pif(annotations, im_size=None)
|
boxes, keypoints = self.preprocess_pif(annotations, im_size=None)
|
||||||
(inputs, xy_kps), (uv_kps, uv_boxes, _, _) = self.get_input_data(boxes, keypoints, kk)
|
(inputs, _), (uv_kps, uv_boxes, _, _) = self.get_input_data(boxes, keypoints, kk)
|
||||||
|
|
||||||
for ii, box in enumerate(uv_boxes):
|
for ii, box in enumerate(uv_boxes):
|
||||||
idx_max, iou_max = self.get_idx_max(box, boxes_gt)
|
idx_max, iou_max = self.get_idx_max(box, boxes_gt)
|
||||||
|
|||||||
@ -70,7 +70,7 @@ def cli():
|
|||||||
|
|
||||||
# Training
|
# Training
|
||||||
training_parser.add_argument('--joints', help='Json file with input joints',
|
training_parser.add_argument('--joints', help='Json file with input joints',
|
||||||
default='data/arrays/joints-nuscenes-190507-0852.json')
|
default='data/arrays/joints-nuscenes_teaser-190513-1846.json')
|
||||||
training_parser.add_argument('--save', help='whether to not save model and log file', action='store_false')
|
training_parser.add_argument('--save', help='whether to not save model and log file', action='store_false')
|
||||||
training_parser.add_argument('-e', '--epochs', type=int, help='number of epochs to train for', default=150)
|
training_parser.add_argument('-e', '--epochs', type=int, help='number of epochs to train for', default=150)
|
||||||
training_parser.add_argument('--bs', type=int, default=256, help='input batch size')
|
training_parser.add_argument('--bs', type=int, default=256, help='input batch size')
|
||||||
|
|||||||
@ -1,16 +1,16 @@
|
|||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import copy
|
import copy
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import os
|
import os
|
||||||
import datetime
|
import datetime
|
||||||
import logging
|
import logging
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
import json
|
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from torch.optim import lr_scheduler
|
from torch.optim import lr_scheduler
|
||||||
|
|
||||||
|
|||||||
@ -1,6 +1,5 @@
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
import matplotlib
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from matplotlib.patches import Ellipse
|
from matplotlib.patches import Ellipse
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user