monoloco/monstereo/utils/iou.py
2020-08-20 11:33:19 +02:00

99 lines
3.2 KiB
Python

import numpy as np
def calculate_iou(box1, box2):
# Calculate the (x1, y1, x2, y2) coordinates of the intersection of box1 and box2. Calculate its Area.
# box1 = [-3, 8.5, 3, 11.5]
# box2 = [-3, 9.5, 3, 12.5]
# box1 = [1086.84, 156.24, 1181.62, 319.12]
# box2 = [1078.333357, 159.086347, 1193.771014, 322.239107]
xi1 = max(box1[0], box2[0])
yi1 = max(box1[1], box2[1])
xi2 = min(box1[2], box2[2])
yi2 = min(box1[3], box2[3])
inter_area = max((xi2 - xi1), 0) * max((yi2 - yi1), 0) # Max keeps into account not overlapping box
# Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B)
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
union_area = box1_area + box2_area - inter_area
# compute the IoU
iou = inter_area / union_area
return iou
def get_iou_matrix(boxes, boxes_gt):
"""
Get IoU matrix between predicted and ground truth boxes
Dim: (boxes, boxes_gt)
"""
iou_matrix = np.zeros((len(boxes), len(boxes_gt)))
for idx, box in enumerate(boxes):
for idx_gt, box_gt in enumerate(boxes_gt):
iou_matrix[idx, idx_gt] = calculate_iou(box, box_gt)
return iou_matrix
def get_iou_matches(boxes, boxes_gt, iou_min=0.3):
"""From 2 sets of boxes and a minimum threshold, compute the matching indices for IoU matches"""
matches = []
used = []
if not boxes or not boxes_gt:
return []
confs = [box[4] for box in boxes]
indices = list(np.argsort(confs))
for idx in indices[::-1]:
box = boxes[idx]
ious = []
for idx_gt, box_gt in enumerate(boxes_gt):
iou = calculate_iou(box, box_gt)
ious.append(iou)
idx_gt_max = int(np.argmax(ious))
if (ious[idx_gt_max] >= iou_min) and (idx_gt_max not in used):
matches.append((idx, idx_gt_max))
used.append(idx_gt_max)
return matches
def get_iou_matches_matrix(boxes, boxes_gt, thresh):
"""From 2 sets of boxes and a minimum threshold, compute the matching indices for IoU matchings"""
iou_matrix = get_iou_matrix(boxes, boxes_gt)
if not iou_matrix.size:
return []
matches = []
iou_max = np.max(iou_matrix)
while iou_max > thresh:
# Extract the indeces of the max
args_max = np.unravel_index(np.argmax(iou_matrix, axis=None), iou_matrix.shape)
matches.append(args_max)
iou_matrix[args_max[0], :] = 0
iou_matrix[:, args_max[1]] = 0
iou_max = np.max(iou_matrix)
return matches
def reorder_matches(matches, boxes, mode='left_rigth'):
"""
Reorder a list of (idx, idx_gt) matches based on position of the detections in the image
ordered_boxes = (5, 6, 7, 0, 1, 4, 2, 4)
matches = [(0, x), (2,x), (4,x), (3,x), (5,x)]
Output --> [(5, x), (0, x), (3, x), (2, x), (5, x)]
"""
assert mode == 'left_right'
# Order the boxes based on the left-right position in the image and
ordered_boxes = np.argsort([box[0] for box in boxes]) # indices of boxes ordered from left to right
matches_left = [idx for (idx, _) in matches]
return [matches[matches_left.index(idx_boxes)] for idx_boxes in ordered_boxes if idx_boxes in matches_left]