first commit
This commit is contained in:
commit
a37b5c7b6c
14
.gitignore
vendored
Normal file
14
.gitignore
vendored
Normal file
@ -0,0 +1,14 @@
|
||||
.idea/
|
||||
data/
|
||||
.DS_store
|
||||
__pycache__
|
||||
Monoloco/*.pyc
|
||||
.pytest*
|
||||
build/
|
||||
dist/
|
||||
*.egg-info
|
||||
tests/*.png
|
||||
kitti-eval/build
|
||||
kitti-eval/cmake-build-debug
|
||||
figures/
|
||||
visual_tests/
|
||||
26
.pylintrc
Normal file
26
.pylintrc
Normal file
@ -0,0 +1,26 @@
|
||||
|
||||
|
||||
[BASIC]
|
||||
variable-rgx=[a-z0-9_]{1,30}$ # to accept 2 (dfferent) letters variables
|
||||
|
||||
|
||||
Good-names=xx,dd,zz,hh,ww,pp,kk,lr,w1,w2,w3,mm,im,uv,ax,COV_MIN,CONF_MIN
|
||||
|
||||
|
||||
[TYPECHECK]
|
||||
|
||||
disable=import-error,invalid-name,unused-variable,fixme,E1102,missing-docstring,useless-object-inheritance,duplicate-code,too-many-arguments,too-many-instance-attributes,too-many-locals,too-few-public-methods,arguments-differ,logging-format-interpolation
|
||||
|
||||
|
||||
# List of members which are set dynamically and missed by pylint inference
|
||||
# system, and so shouldn't trigger E1101 when accessed. Python regular
|
||||
# expressions are accepted.
|
||||
|
||||
generated-members=numpy.*,torch.*,cv2.*
|
||||
|
||||
ignored-modules=nuscenes, tabulate, cv2
|
||||
|
||||
|
||||
|
||||
[FORMAT]
|
||||
max-line-length=120
|
||||
9
LICENSE
Normal file
9
LICENSE
Normal file
@ -0,0 +1,9 @@
|
||||
Copyright 2020 by EPFL/VITA. All rights reserved.
|
||||
|
||||
This project and all its files are licensed under
|
||||
GNU AGPLv3 or later version.
|
||||
|
||||
If this license is not suitable for your business or project
|
||||
please contact EPFL-TTO (https://tto.epfl.ch/) for a full commercial license.
|
||||
|
||||
This software may not be used to harm any person deliberately.
|
||||
661
LICENSE.AGPL
Normal file
661
LICENSE.AGPL
Normal file
@ -0,0 +1,661 @@
|
||||
GNU AFFERO GENERAL PUBLIC LICENSE
|
||||
Version 3, 19 November 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU Affero General Public License is a free, copyleft license for
|
||||
software and other kinds of works, specifically designed to ensure
|
||||
cooperation with the community in the case of network server software.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
our General Public Licenses are intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
Developers that use our General Public Licenses protect your rights
|
||||
with two steps: (1) assert copyright on the software, and (2) offer
|
||||
you this License which gives you legal permission to copy, distribute
|
||||
and/or modify the software.
|
||||
|
||||
A secondary benefit of defending all users' freedom is that
|
||||
improvements made in alternate versions of the program, if they
|
||||
receive widespread use, become available for other developers to
|
||||
incorporate. Many developers of free software are heartened and
|
||||
encouraged by the resulting cooperation. However, in the case of
|
||||
software used on network servers, this result may fail to come about.
|
||||
The GNU General Public License permits making a modified version and
|
||||
letting the public access it on a server without ever releasing its
|
||||
source code to the public.
|
||||
|
||||
The GNU Affero General Public License is designed specifically to
|
||||
ensure that, in such cases, the modified source code becomes available
|
||||
to the community. It requires the operator of a network server to
|
||||
provide the source code of the modified version running there to the
|
||||
users of that server. Therefore, public use of a modified version, on
|
||||
a publicly accessible server, gives the public access to the source
|
||||
code of the modified version.
|
||||
|
||||
An older license, called the Affero General Public License and
|
||||
published by Affero, was designed to accomplish similar goals. This is
|
||||
a different license, not a version of the Affero GPL, but Affero has
|
||||
released a new version of the Affero GPL which permits relicensing under
|
||||
this license.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU Affero General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Remote Network Interaction; Use with the GNU General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, if you modify the
|
||||
Program, your modified version must prominently offer all users
|
||||
interacting with it remotely through a computer network (if your version
|
||||
supports such interaction) an opportunity to receive the Corresponding
|
||||
Source of your version by providing access to the Corresponding Source
|
||||
from a network server at no charge, through some standard or customary
|
||||
means of facilitating copying of software. This Corresponding Source
|
||||
shall include the Corresponding Source for any work covered by version 3
|
||||
of the GNU General Public License that is incorporated pursuant to the
|
||||
following paragraph.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the work with which it is combined will remain governed by version
|
||||
3 of the GNU General Public License.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU Affero General Public License from time to time. Such new versions
|
||||
will be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU Affero General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU Affero General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU Affero General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If your software can interact with users remotely through a computer
|
||||
network, you should also make sure that it provides a way for users to
|
||||
get its source. For example, if your program is a web application, its
|
||||
interface could display a "Source" link that leads users to an archive
|
||||
of the code. There are many ways you could offer source, and different
|
||||
solutions will be better for different programs; see section 13 for the
|
||||
specific requirements.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU AGPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
184
README.md
Normal file
184
README.md
Normal file
@ -0,0 +1,184 @@
|
||||
# MonStereo
|
||||
|
||||
> Monocular and stereo vision are cost-effective solutions for 3D human localization
|
||||
in the context of self-driving cars or social robots. However, they are usually developed independently
|
||||
and have their respective strengths and limitations. We propose a novel unified learning framework that
|
||||
leverages the strengths of both monocular and stereo cues for 3D human localization.
|
||||
Our method jointly (i) associates humans in left-right images,
|
||||
(ii) deals with occluded and distant cases in stereo settings by relying on the robustness of monocular cues,
|
||||
and (iii) tackles the intrinsic ambiguity of monocular perspective projection by exploiting prior knowledge
|
||||
of human height distribution.
|
||||
We achieve state-of-the-art quantitative results for the 3D localization task on KITTI dataset
|
||||
and estimate confidence intervals that account for challenging instances.
|
||||
We show qualitative examples for the long tail challenges such as occluded,
|
||||
far-away, and children instances.
|
||||
|
||||
```
|
||||
@InProceedings{bertoni_monstereo,
|
||||
author = {Bertoni, Lorenzo and Kreiss, Sven and Mordan, Taylor and Alahi, Alexandre},
|
||||
title = {MonStereo: When Monocular and Stereo Meet at the Tail of 3D Human Localization},
|
||||
booktitle = {ArXiv},
|
||||
month = {August},
|
||||
year = {2020}
|
||||
}
|
||||
```
|
||||
|
||||
# Features
|
||||
The code has been built upon the ICCV'19 project [MonoLoco](https://github.com/vita-epfl/monoloco).
|
||||
This repository supports
|
||||
|
||||
* the original MonoLoco
|
||||
* An improved Monocular version (MonoLoco++) for x,y,z coordinates, orientation, and dimensions
|
||||
* MonStereo
|
||||
|
||||
# Setup
|
||||
|
||||
### Install
|
||||
The installation has been tested on OSX and Linux operating systems, with Python 3.6 or Python 3.7.
|
||||
Packages have been installed with pip and virtual environments.
|
||||
For quick installation, do not clone this repository,
|
||||
and make sure there is no folder named monstereo in your current directory.
|
||||
A GPU is not required, yet highly recommended for real-time performances.
|
||||
MonStereo can be installed as a package, by:
|
||||
|
||||
```
|
||||
pip3 install monstereo
|
||||
```
|
||||
|
||||
For development of the monstereo source code itself, you need to clone this repository and then:
|
||||
```
|
||||
pip3 install sdist
|
||||
cd monstereo
|
||||
python3 setup.py sdist bdist_wheel
|
||||
pip3 install -e .
|
||||
```
|
||||
|
||||
### Data structure
|
||||
|
||||
Data
|
||||
├── arrays
|
||||
├── models
|
||||
├── kitti
|
||||
├── logs
|
||||
├── output
|
||||
|
||||
|
||||
Run the following to create the folders:
|
||||
```
|
||||
mkdir data
|
||||
cd data
|
||||
mkdir arrays models kitti logs output
|
||||
```
|
||||
|
||||
### Pre-trained Models
|
||||
* Download Monstereo pre-trained model from
|
||||
[Google Drive](https://drive.google.com/file/d/1vrfkOl15Hpwp2YoALCojD7xlVCt8BQDB/view?usp=sharing),
|
||||
and save them in `data/models`
|
||||
(default) or in any folder and call it through the command line option `--model <model path>`
|
||||
* Pifpaf pre-trained model will be automatically downloaded at the first run.
|
||||
Three standard, pretrained models are available when using the command line option
|
||||
`--checkpoint resnet50`, `--checkpoint resnet101` and `--checkpoint resnet152`.
|
||||
Alternatively, you can download a Pifpaf pre-trained model from [openpifpaf](https://github.com/vita-epfl/openpifpaf)
|
||||
and call it with `--checkpoint <pifpaf model path>`. All experiments have been run with v0.8 of pifpaf.
|
||||
If you'd like to use an updated version, we suggest to re-train the MonStereo model as well.
|
||||
* The model for the experiments is provided in *data/models/ms-200710-1511.pkl*
|
||||
|
||||
# Interfaces
|
||||
All the commands are run through a main file called `main.py` using subparsers.
|
||||
To check all the commands for the parser and the subparsers (including openpifpaf ones) run:
|
||||
|
||||
* `python3 -m monstereo.run --help`
|
||||
* `python3 -m monstereo.run predict --help`
|
||||
* `python3 -m monstereo.run train --help`
|
||||
* `python3 -m monstereo.run eval --help`
|
||||
* `python3 -m monstereo.run prep --help`
|
||||
|
||||
or check the file `monstereo/run.py`
|
||||
|
||||
# Prediction
|
||||
The predict script receives an image (or an entire folder using glob expressions),
|
||||
calls PifPaf for 2d human pose detection over the image
|
||||
and runs MonStereo for 3d location of the detected poses.
|
||||
|
||||
|
||||
Output options include json files and/or visualization of the predictions on the image in *frontal mode*,
|
||||
*birds-eye-view mode* or *combined mode* and can be specified with `--output_types`
|
||||
|
||||
|
||||
### Ground truth matching
|
||||
* In case you provide a ground-truth json file to compare the predictions of MonSter,
|
||||
the script will match every detection using Intersection over Union metric.
|
||||
The ground truth file can be generated using the subparser `prep` and called with the command `--path_gt`.
|
||||
As this step requires running the pose detector over all the training images and save the annotations, we
|
||||
provide the resulting json file for the category *pedestrians* from
|
||||
[Google Drive](https://drive.google.com/file/d/1e-wXTO460ip_Je2NdXojxrOrJ-Oirlgh/view?usp=sharing)
|
||||
and save it into `data/arrays`.
|
||||
|
||||
* In case the ground-truth json file is not available, with the command `--show_all`, is possible to
|
||||
show all the prediction for the image
|
||||
|
||||
After downloading model and ground-truth file, a demo can be tested with the following commands:
|
||||
|
||||
`python3 -m monstereo.run predict --glob docs/000840*.png --output_types combined --scale 2
|
||||
--model data/models/ms-200710-1511.pkl --z_max 30 --checkpoint resnet152 --path_gt data/arrays/names-kitti-200615-1022.json
|
||||
-o data/output`
|
||||
|
||||

|
||||
|
||||
`python3 -m monstereo.run predict --glob docs/005523*.png --output_types combined --scale 2
|
||||
--model data/models/ms-200710-1511.pkl --z_max 30 --checkpoint resnet152 --path_gt data/arrays/names-kitti-200615-1022.json
|
||||
-o data/output`
|
||||
|
||||

|
||||
|
||||
# Preprocessing
|
||||
Preprocessing and training step are already fully supported by the code provided,
|
||||
but require first to run a pose detector over
|
||||
all the training images and collect the annotations.
|
||||
The code supports this option (by running the predict script and using `--mode pifpaf`).
|
||||
Once the code will be made publicly available, we will add
|
||||
links to download annotations.
|
||||
|
||||
### Datasets
|
||||
Download KITTI ground truth files and camera calibration matrices for training
|
||||
from [here](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) and
|
||||
save them respectively into `data/kitti/gt` and `data/kitti/calib`.
|
||||
To extract pifpaf joints, you also need to download training images soft link the folder in `
|
||||
data/kitti/images`
|
||||
|
||||
|
||||
### Annotations to preprocess
|
||||
MonStereo is trained using 2D human pose joints. To create them run pifaf over KITTI training images.
|
||||
You can create them running the predict script and using `--mode pifpaf`.
|
||||
|
||||
### Inputs joints for training
|
||||
MonoStereo is trained using 2D human pose joints matched with the ground truth location provided by
|
||||
KITTI Dataset. To create the joints run: `python3 -m monstereo.run prep` specifying:
|
||||
1. `--dir_ann` annotation directory containing Pifpaf joints of KITTI.
|
||||
|
||||
|
||||
### Ground truth file for evaluation
|
||||
The preprocessing script also outputs a second json file called **names-<date-time>.json** which provide a dictionary indexed
|
||||
by the image name to easily access ground truth files for evaluation and prediction purposes.
|
||||
|
||||
|
||||
# Training
|
||||
Provide the json file containing the preprocess joints as argument.
|
||||
As simple as `python3 -m monstereo.run train --joints <json file path>`
|
||||
All the hyperparameters options can be checked at `python3 -m monstereo.run train --help`.
|
||||
|
||||
# Evaluation (KITTI Dataset)
|
||||
### Average Localization Metric (ALE)
|
||||
We provide evaluation on KITTI in the eval section. Txt files for MonStereo are generated with the command:
|
||||
|
||||
`python -m monstereo.run eval --dir_ann <directory of pifpaf annotations> --model data/models/ms-200710-1511.pkl --generate`
|
||||
|
||||
### Relative Average Precision Localization (RALP-5%)
|
||||
We modified the original C++ evaluation of KITTI to make it relative to distance. We use **cmake**.
|
||||
To run the evaluation, first generate the txt files with:
|
||||
|
||||
`python -m monstereo.run eval --dir_ann <directory of pifpaf annotations> --model data/models/ms-200710-1511.pkl --generate`
|
||||
|
||||
Then follow the instructions of this [repository](https://github.com/cguindel/eval_kitti)
|
||||
to prepare the folders accordingly (or follow kitti guidelines) and run evaluation.
|
||||
The modified file is called *evaluate_object.cpp* and runs exactly as the original kitti evaluation.
|
||||
BIN
docs/000840.png
Executable file
BIN
docs/000840.png
Executable file
Binary file not shown.
|
After Width: | Height: | Size: 736 KiB |
BIN
docs/000840_right.png
Executable file
BIN
docs/000840_right.png
Executable file
Binary file not shown.
|
After Width: | Height: | Size: 732 KiB |
BIN
docs/005523.png
Executable file
BIN
docs/005523.png
Executable file
Binary file not shown.
|
After Width: | Height: | Size: 872 KiB |
BIN
docs/005523_right.png
Executable file
BIN
docs/005523_right.png
Executable file
Binary file not shown.
|
After Width: | Height: | Size: 826 KiB |
BIN
docs/out_000840.png
Normal file
BIN
docs/out_000840.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 584 KiB |
BIN
docs/out_005523.png
Normal file
BIN
docs/out_005523.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 761 KiB |
8
kitti-eval/CMakeLists.txt
Normal file
8
kitti-eval/CMakeLists.txt
Normal file
@ -0,0 +1,8 @@
|
||||
cmake_minimum_required (VERSION 2.6)
|
||||
project(devkit_object)
|
||||
|
||||
find_package(PNG REQUIRED)
|
||||
|
||||
add_executable(evaluate_object evaluate_object.cpp)
|
||||
include_directories(${PNG_INCLUDE_DIR})
|
||||
target_link_libraries(evaluate_object ${PNG_LIBRARY})
|
||||
34
kitti-eval/README.md
Normal file
34
kitti-eval/README.md
Normal file
@ -0,0 +1,34 @@
|
||||
# eval_kitti #
|
||||
|
||||
[](https://travis-ci.org/cguindel/eval_kitti)
|
||||
[](https://creativecommons.org/licenses/by-nc-sa/3.0/)
|
||||
|
||||
The *eval_kitti* software contains tools to evaluate object detection results using the KITTI dataset. The code is based on the [KITTI object development kit](http://www.cvlibs.net/datasets/kitti/eval_object.php).
|
||||
|
||||
### Tools ###
|
||||
|
||||
* *evaluate_object* is an improved version of the official KITTI evaluation that enables multi-class evaluation and splits of the training set for validation. It's updated according to the modifications introduced in 2017 by the KITTI authors.
|
||||
* *parser* is meant to provide mAP and mAOS stats from the precision-recall curves obtained with the evaluation script.
|
||||
* *create_link* is a helper that can be used to create a link to the results obtained with [lsi-faster-rcnn](https://github.com/cguindel/lsi-faster-rcnn).
|
||||
|
||||
### Usage ###
|
||||
Build *evaluate_object* with CMake:
|
||||
```
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
make
|
||||
```
|
||||
|
||||
The `evaluate_object` executable will be then created inside `build`. The following folders are also required to be placed there in order to perform the evaluation:
|
||||
|
||||
* `data/object/label_2`, with the KITTI dataset labels.
|
||||
* `lists`, containing the `.txt` files with the train/validation splits. These files are expected to contain a list of the used image indices, one per row.
|
||||
* `results`, in which a subfolder should be created for every test, including a second-level `data` folder with the resulting `.txt` files to be evaluated.
|
||||
|
||||
`evaluate_object` should be called with the name of the results folder and the validation split; e.g.: ```./evaluate_object leaderboard valsplit ```
|
||||
|
||||
`parser` needs the results folder; e.g.: ```./parser.py leaderboard ```. **Note**: *parser* will only provide results for *Car*, *Pedestrian* and *Cyclist*; modify it (line 8) if you need to evaluate the rest of classes.
|
||||
|
||||
### Copyright ###
|
||||
This work is a derivative of [The KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/eval_object.php) by A. Geiger, P. Lenz, C. Stiller and R. Urtasun, used under [CC BY-NC-SA](https://creativecommons.org/licenses/by-nc-sa/3.0/). Consequently, code in this repository is published under the same [Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License](https://creativecommons.org/licenses/by-nc-sa/3.0/). This means that you must attribute the work in the manner specified by the authors, you may not use this work for commercial purposes and if you alter, transform, or build upon this work, you may distribute the resulting work only under the same license.
|
||||
1447
kitti-eval/evaluate_object.cpp
Normal file
1447
kitti-eval/evaluate_object.cpp
Normal file
File diff suppressed because it is too large
Load Diff
1003
kitti-eval/original.cpp
Normal file
1003
kitti-eval/original.cpp
Normal file
File diff suppressed because it is too large
Load Diff
59
kitti-eval/parser.py
Executable file
59
kitti-eval/parser.py
Executable file
@ -0,0 +1,59 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
# CLASSES = ['car', 'pedestrian', 'cyclist', 'van', 'truck', 'person_sitting', 'tram']
|
||||
CLASSES = ['pedestrian']
|
||||
|
||||
# PARAMS = ['detection', 'orientation', 'iour', 'mppe']
|
||||
PARAMS = ['detection', 'detection_1%', 'detection_5%', 'detection_10%', 'detection_3d', 'detection_ground', 'orientation']
|
||||
|
||||
DIFFICULTIES = ['easy', 'moderate', 'hard', 'all']
|
||||
|
||||
eval_type = ''
|
||||
|
||||
if len(sys.argv)<2:
|
||||
print('Usage: parser.py results_folder [evaluation_type]')
|
||||
|
||||
if len(sys.argv)==3:
|
||||
eval_type = sys.argv[2]
|
||||
|
||||
result_sha = sys.argv[1]
|
||||
txt_dir = os.path.join('build','results', result_sha)
|
||||
|
||||
for class_name in CLASSES:
|
||||
for param in PARAMS:
|
||||
print("--{:s} {:s}--".format(class_name, param))
|
||||
if eval_type is '':
|
||||
txt_name = os.path.join(txt_dir, 'stats_' + class_name + '_' + param + '.txt')
|
||||
else:
|
||||
txt_name = os.path.join(txt_dir, 'stats_' + class_name + '_' + param + '_' + eval_type + '.txt')
|
||||
|
||||
if not os.path.isfile(txt_name):
|
||||
print(txt_name, ' not found')
|
||||
continue
|
||||
|
||||
cont = np.loadtxt(txt_name)
|
||||
|
||||
averages = []
|
||||
for idx, difficulty in enumerate(DIFFICULTIES):
|
||||
sum = 0
|
||||
if param in PARAMS:
|
||||
for i in range(1, 41):
|
||||
sum += cont[idx][i]
|
||||
|
||||
average = sum/40.0
|
||||
|
||||
#print class_name, difficulty, param, average
|
||||
averages.append(average)
|
||||
|
||||
#print "\n"+class_name+" "+param
|
||||
print("Easy\tMod.\tHard\tAll")
|
||||
print("{:.2f}\t{:.2f}\t{:.2f}\t{:.2f}".format(100*averages[0], 100*averages[1],100*averages[2],100*averages[3]))
|
||||
print("---------------------------------------------------------------------------------")
|
||||
if eval_type is not '' and param=='detection':
|
||||
break # No orientation for 3D or bird eye
|
||||
|
||||
#print '================='
|
||||
4
monstereo/__init__.py
Normal file
4
monstereo/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
|
||||
"""Open implementation of MonStereo."""
|
||||
|
||||
__version__ = '0.1'
|
||||
344
monstereo/activity.py
Normal file
344
monstereo/activity.py
Normal file
@ -0,0 +1,344 @@
|
||||
|
||||
# pylint: disable=too-many-statements
|
||||
|
||||
import math
|
||||
import glob
|
||||
import os
|
||||
import copy
|
||||
from contextlib import contextmanager
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Circle, FancyArrow
|
||||
from PIL import Image
|
||||
|
||||
from .network.process import laplace_sampling
|
||||
from .utils import open_annotations
|
||||
from .visuals.pifpaf_show import KeypointPainter, image_canvas
|
||||
from .network import Loco
|
||||
from .network.process import factory_for_gt, preprocess_pifpaf
|
||||
|
||||
|
||||
def social_interactions(idx, centers, angles, dds, stds=None, social_distance=False,
|
||||
n_samples=100, threshold_prob=0.25, threshold_dist=2, radii=(0.3, 0.5)):
|
||||
"""
|
||||
return flag of alert if social distancing is violated
|
||||
"""
|
||||
xx = centers[idx][0]
|
||||
zz = centers[idx][1]
|
||||
distances = [math.sqrt((xx - centers[i][0]) ** 2 + (zz - centers[i][1]) ** 2) for i, _ in enumerate(centers)]
|
||||
sorted_idxs = np.argsort(distances)
|
||||
indices = [idx_t for idx_t in sorted_idxs[1:] if distances[idx_t] <= threshold_dist]
|
||||
|
||||
# Deterministic
|
||||
if n_samples < 2:
|
||||
for idx_t in indices:
|
||||
if check_f_formations(idx, idx_t, centers, angles,
|
||||
radii=radii, # Binary value
|
||||
social_distance=social_distance):
|
||||
return True
|
||||
|
||||
# Probabilistic
|
||||
else:
|
||||
# Samples distance
|
||||
dds = torch.tensor(dds).view(-1, 1)
|
||||
stds = torch.tensor(stds).view(-1, 1)
|
||||
# stds_te = get_task_error(dds) # similar results to MonoLoco but lower true positive
|
||||
laplace_d = torch.cat((dds, stds), dim=1)
|
||||
samples_d = laplace_sampling(laplace_d, n_samples=n_samples)
|
||||
|
||||
# Iterate over close people
|
||||
for idx_t in indices:
|
||||
f_forms = []
|
||||
for s_d in range(n_samples):
|
||||
new_centers = copy.deepcopy(centers)
|
||||
for el in (idx, idx_t):
|
||||
delta_d = dds[el] - float(samples_d[s_d, el])
|
||||
theta = math.atan2(new_centers[el][1], new_centers[el][0])
|
||||
delta_x = delta_d * math.cos(theta)
|
||||
delta_z = delta_d * math.sin(theta)
|
||||
new_centers[el][0] += delta_x
|
||||
new_centers[el][1] += delta_z
|
||||
f_forms.append(check_f_formations(idx, idx_t, new_centers, angles,
|
||||
radii=radii,
|
||||
social_distance=social_distance))
|
||||
if (sum(f_forms) / n_samples) >= threshold_prob:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_f_formations(idx, idx_t, centers, angles, radii, social_distance=False):
|
||||
"""
|
||||
Check F-formations for people close together:
|
||||
1) Empty space of 0.4 + meters (no other people or themselves inside)
|
||||
2) People looking inward
|
||||
"""
|
||||
|
||||
# Extract centers and angles
|
||||
other_centers = np.array([cent for l, cent in enumerate(centers) if l not in (idx, idx_t)])
|
||||
theta0 = angles[idx]
|
||||
theta1 = angles[idx_t]
|
||||
|
||||
# Find the center of o-space as average of two candidates (based on their orientation)
|
||||
for radius in radii:
|
||||
x_0 = np.array([centers[idx][0], centers[idx][1]])
|
||||
x_1 = np.array([centers[idx_t][0], centers[idx_t][1]])
|
||||
|
||||
mu_0 = np.array([centers[idx][0] + radius * math.cos(theta0), centers[idx][1] - radius * math.sin(theta0)])
|
||||
mu_1 = np.array([centers[idx_t][0] + radius * math.cos(theta1), centers[idx_t][1] - radius * math.sin(theta1)])
|
||||
o_c = (mu_0 + mu_1) / 2
|
||||
|
||||
# Verify they are looking inwards.
|
||||
# The distance between mus and the center should be less wrt the original position and the center
|
||||
d_new = np.linalg.norm(mu_0 - mu_1) / 2 if social_distance else np.linalg.norm(mu_0 - mu_1)
|
||||
d_0 = np.linalg.norm(x_0 - o_c)
|
||||
d_1 = np.linalg.norm(x_1 - o_c)
|
||||
|
||||
# Verify no intrusion for third parties
|
||||
if other_centers.size:
|
||||
other_distances = np.linalg.norm(other_centers - o_c.reshape(1, -1), axis=1)
|
||||
else:
|
||||
other_distances = 100 * np.ones((1, 1)) # Condition verified if no other people
|
||||
|
||||
# Binary Classification
|
||||
if d_new <= min(d_0, d_1) and np.min(other_distances) > radius:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def predict(args):
|
||||
|
||||
cnt = 0
|
||||
args.device = torch.device('cpu')
|
||||
if torch.cuda.is_available():
|
||||
args.device = torch.device('cuda')
|
||||
|
||||
# Load data and model
|
||||
monoloco = Loco(model=args.model, net='monoloco_pp',
|
||||
device=args.device, n_dropout=args.n_dropout, p_dropout=args.dropout)
|
||||
|
||||
images = []
|
||||
images += glob.glob(args.glob) # from cli as a string or linux converts
|
||||
|
||||
# Option 1: Run PifPaf extract poses and run MonoLoco in a single forward pass
|
||||
if args.json_dir is None:
|
||||
from .network import PifPaf, ImageList
|
||||
pifpaf = PifPaf(args)
|
||||
data = ImageList(args.images, scale=args.scale)
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
data, batch_size=1, shuffle=False,
|
||||
pin_memory=args.pin_memory, num_workers=args.loader_workers)
|
||||
|
||||
for idx, (image_paths, image_tensors, processed_images_cpu) in enumerate(data_loader):
|
||||
images = image_tensors.permute(0, 2, 3, 1)
|
||||
|
||||
processed_images = processed_images_cpu.to(args.device, non_blocking=True)
|
||||
fields_batch = pifpaf.fields(processed_images)
|
||||
|
||||
# unbatch
|
||||
for image_path, image, processed_image_cpu, fields in zip(
|
||||
image_paths, images, processed_images_cpu, fields_batch):
|
||||
|
||||
if args.output_directory is None:
|
||||
output_path = image_path
|
||||
else:
|
||||
file_name = os.path.basename(image_path)
|
||||
output_path = os.path.join(args.output_directory, file_name)
|
||||
im_size = (float(image.size()[1] / args.scale),
|
||||
float(image.size()[0] / args.scale))
|
||||
|
||||
print('image', idx, image_path, output_path)
|
||||
|
||||
_, _, pifpaf_out = pifpaf.forward(image, processed_image_cpu, fields)
|
||||
|
||||
kk, dic_gt = factory_for_gt(im_size, name=image_path, path_gt=args.path_gt)
|
||||
image_t = image # Resized tensor
|
||||
|
||||
# Run Monoloco
|
||||
boxes, keypoints = preprocess_pifpaf(pifpaf_out, im_size, enlarge_boxes=False)
|
||||
dic_out = monoloco.forward(keypoints, kk)
|
||||
dic_out = monoloco.post_process(dic_out, boxes, keypoints, kk, dic_gt, reorder=False)
|
||||
|
||||
# Print
|
||||
show_social(args, image_t, output_path, pifpaf_out, dic_out)
|
||||
|
||||
print('Image {}\n'.format(cnt) + '-' * 120)
|
||||
cnt += 1
|
||||
|
||||
# Option 2: Load json file of poses from PifPaf and run monoloco
|
||||
else:
|
||||
for idx, im_path in enumerate(images):
|
||||
|
||||
# Load image
|
||||
with open(im_path, 'rb') as f:
|
||||
image = Image.open(f).convert('RGB')
|
||||
if args.output_directory is None:
|
||||
output_path = im_path
|
||||
else:
|
||||
file_name = os.path.basename(im_path)
|
||||
output_path = os.path.join(args.output_directory, file_name)
|
||||
|
||||
im_size = (float(image.size[0] / args.scale),
|
||||
float(image.size[1] / args.scale)) # Width, Height (original)
|
||||
kk, dic_gt = factory_for_gt(im_size, name=im_path, path_gt=args.path_gt)
|
||||
image_t = torchvision.transforms.functional.to_tensor(image).permute(1, 2, 0)
|
||||
|
||||
# Load json
|
||||
basename, ext = os.path.splitext(os.path.basename(im_path))
|
||||
|
||||
extension = ext + '.pifpaf.json'
|
||||
path_json = os.path.join(args.json_dir, basename + extension)
|
||||
annotations = open_annotations(path_json)
|
||||
|
||||
# Run Monoloco
|
||||
boxes, keypoints = preprocess_pifpaf(annotations, im_size, enlarge_boxes=False)
|
||||
dic_out = monoloco.forward(keypoints, kk)
|
||||
dic_out = monoloco.post_process(dic_out, boxes, keypoints, kk, dic_gt, reorder=False)
|
||||
# Print
|
||||
show_social(args, image_t, output_path, annotations, dic_out)
|
||||
|
||||
print('Image {}\n'.format(cnt) + '-' * 120)
|
||||
cnt += 1
|
||||
|
||||
|
||||
def show_social(args, image_t, output_path, annotations, dic_out):
|
||||
"""Output frontal image with poses or combined with bird eye view"""
|
||||
|
||||
assert 'front' in args.output_types or 'bird' in args.output_types, "outputs allowed: front and/or bird"
|
||||
|
||||
angles = dic_out['angles']
|
||||
dds = dic_out['dds_pred']
|
||||
stds = dic_out['stds_ale']
|
||||
xz_centers = [[xx[0], xx[2]] for xx in dic_out['xyz_pred']]
|
||||
|
||||
if 'front' in args.output_types:
|
||||
|
||||
# Resize back the tensor image to its original dimensions
|
||||
if not 0.99 < args.scale < 1.01:
|
||||
size = (round(image_t.shape[0] / args.scale), round(image_t.shape[1] / args.scale)) # height width
|
||||
image_t = image_t.permute(2, 0, 1).unsqueeze(0) # batch x channels x height x width
|
||||
image_t = F.interpolate(image_t, size=size).squeeze().permute(1, 2, 0)
|
||||
|
||||
# Prepare color for social distancing
|
||||
colors = ['r' if social_interactions(idx, xz_centers, angles, dds,
|
||||
stds=stds,
|
||||
threshold_prob=args.threshold_prob,
|
||||
threshold_dist=args.threshold_dist,
|
||||
radii=args.radii)
|
||||
else 'deepskyblue'
|
||||
for idx, _ in enumerate(dic_out['xyz_pred'])]
|
||||
|
||||
# Draw keypoints and orientation
|
||||
keypoint_sets, scores = get_pifpaf_outputs(annotations)
|
||||
uv_centers = dic_out['uv_heads']
|
||||
sizes = [abs(dic_out['uv_heads'][idx][1] - uv_s[1]) / 1.5 for idx, uv_s in
|
||||
enumerate(dic_out['uv_shoulders'])]
|
||||
keypoint_painter = KeypointPainter(show_box=False)
|
||||
|
||||
with image_canvas(image_t,
|
||||
output_path + '.front.png',
|
||||
show=args.show,
|
||||
fig_width=10,
|
||||
dpi_factor=1.0) as ax:
|
||||
keypoint_painter.keypoints(ax, keypoint_sets, colors=colors)
|
||||
draw_orientation(ax, uv_centers, sizes, angles, colors, mode='front')
|
||||
|
||||
if 'bird' in args.output_types:
|
||||
with bird_canvas(args, output_path) as ax1:
|
||||
draw_orientation(ax1, xz_centers, [], angles, colors, mode='bird')
|
||||
draw_uncertainty(ax1, xz_centers, stds)
|
||||
|
||||
|
||||
def get_pifpaf_outputs(annotations):
|
||||
"""Extract keypoints sets and scores from output dictionary"""
|
||||
if not annotations:
|
||||
return [], []
|
||||
keypoints_sets = np.array([dic['keypoints'] for dic in annotations]).reshape(-1, 17, 3)
|
||||
score_weights = np.ones((keypoints_sets.shape[0], 17))
|
||||
score_weights[:, 3] = 3.0
|
||||
# score_weights[:, 5:] = 0.1
|
||||
# score_weights[:, -2:] = 0.0 # ears are not annotated
|
||||
score_weights /= np.sum(score_weights[0, :])
|
||||
kps_scores = keypoints_sets[:, :, 2]
|
||||
ordered_kps_scores = np.sort(kps_scores, axis=1)[:, ::-1]
|
||||
scores = np.sum(score_weights * ordered_kps_scores, axis=1)
|
||||
return keypoints_sets, scores
|
||||
|
||||
|
||||
@contextmanager
|
||||
def bird_canvas(args, output_path):
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
fig.set_tight_layout(True)
|
||||
output_path = output_path + '.bird.png'
|
||||
x_max = args.z_max / 1.5
|
||||
ax.plot([0, x_max], [0, args.z_max], 'k--')
|
||||
ax.plot([0, -x_max], [0, args.z_max], 'k--')
|
||||
ax.set_ylim(0, args.z_max + 1)
|
||||
yield ax
|
||||
fig.savefig(output_path)
|
||||
plt.close(fig)
|
||||
print('Bird-eye-view image saved')
|
||||
|
||||
|
||||
def draw_orientation(ax, centers, sizes, angles, colors, mode):
|
||||
|
||||
if mode == 'front':
|
||||
length = 5
|
||||
fill = False
|
||||
alpha = 0.6
|
||||
zorder_circle = 0.5
|
||||
zorder_arrow = 5
|
||||
linewidth = 1.5
|
||||
edgecolor = 'k'
|
||||
radiuses = [s / 1.2 for s in sizes]
|
||||
else:
|
||||
length = 1.3
|
||||
head_width = 0.3
|
||||
linewidth = 2
|
||||
radiuses = [0.2] * len(centers)
|
||||
# length = 1.6
|
||||
# head_width = 0.4
|
||||
# linewidth = 2.7
|
||||
radiuses = [0.2] * len(centers)
|
||||
fill = True
|
||||
alpha = 1
|
||||
zorder_circle = 2
|
||||
zorder_arrow = 1
|
||||
|
||||
for idx, theta in enumerate(angles):
|
||||
color = colors[idx]
|
||||
radius = radiuses[idx]
|
||||
|
||||
if mode == 'front':
|
||||
x_arr = centers[idx][0] + (length + radius) * math.cos(theta)
|
||||
z_arr = length + centers[idx][1] + (length + radius) * math.sin(theta)
|
||||
delta_x = math.cos(theta)
|
||||
delta_z = math.sin(theta)
|
||||
head_width = max(10, radiuses[idx] / 1.5)
|
||||
|
||||
else:
|
||||
edgecolor = color
|
||||
x_arr = centers[idx][0]
|
||||
z_arr = centers[idx][1]
|
||||
delta_x = length * math.cos(theta)
|
||||
delta_z = - length * math.sin(theta) # keep into account kitti convention
|
||||
|
||||
circle = Circle(centers[idx], radius=radius, color=color, fill=fill, alpha=alpha, zorder=zorder_circle)
|
||||
arrow = FancyArrow(x_arr, z_arr, delta_x, delta_z, head_width=head_width, edgecolor=edgecolor,
|
||||
facecolor=color, linewidth=linewidth, zorder=zorder_arrow)
|
||||
ax.add_patch(circle)
|
||||
ax.add_patch(arrow)
|
||||
|
||||
|
||||
def draw_uncertainty(ax, centers, stds):
|
||||
for idx, std in enumerate(stds):
|
||||
std = stds[idx]
|
||||
theta = math.atan2(centers[idx][1], centers[idx][0])
|
||||
delta_x = std * math.cos(theta)
|
||||
delta_z = std * math.sin(theta)
|
||||
x = (centers[idx][0] - delta_x, centers[idx][0] + delta_x)
|
||||
z = (centers[idx][1] - delta_z, centers[idx][1] + delta_z)
|
||||
ax.plot(x, z, color='g', linewidth=2.5)
|
||||
2
monstereo/eval/__init__.py
Normal file
2
monstereo/eval/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
|
||||
from .eval_kitti import EvalKitti
|
||||
251
monstereo/eval/eval_activity.py
Normal file
251
monstereo/eval/eval_activity.py
Normal file
@ -0,0 +1,251 @@
|
||||
|
||||
import os
|
||||
import glob
|
||||
import csv
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
from monstereo.network import Loco
|
||||
from monstereo.network.process import factory_for_gt, preprocess_pifpaf
|
||||
from monstereo.activity import social_interactions
|
||||
from monstereo.utils import open_annotations, get_iou_matches, get_difficulty
|
||||
|
||||
|
||||
class ActivityEvaluator:
|
||||
"""Evaluate talking activity for Collective Activity Dataset & KITTI"""
|
||||
|
||||
dic_cnt = dict(fp=0, fn=0, det=0)
|
||||
cnt = {'pred': defaultdict(int), 'gt': defaultdict(int)} # pred is for matched instances
|
||||
|
||||
def __init__(self, args):
|
||||
|
||||
# COLLECTIVE ACTIVITY DATASET (talking)
|
||||
# -------------------------------------------------------------------------------------------------------------
|
||||
if args.dataset == 'collective':
|
||||
self.folders_collective = ['seq02', 'seq14', 'seq12', 'seq13', 'seq11', 'seq36']
|
||||
# folders_collective = ['seq02']
|
||||
self.path_collective = ['data/activity/' + fold for fold in self.folders_collective]
|
||||
self.THRESHOLD_PROB = 0.25 # Concordance for samples
|
||||
self.THRESHOLD_DIST = 2 # Threshold to check distance of people
|
||||
self.RADII = (0.3, 0.5) # expected radii of the o-space
|
||||
self.PIFPAF_CONF = 0.4
|
||||
self.SOCIAL_DISTANCE = False
|
||||
# -------------------------------------------------------------------------------------------------------------
|
||||
|
||||
# KITTI DATASET (social distancing)
|
||||
# ------------------------------------------------------------------------------------------------------------
|
||||
else:
|
||||
self.dir_ann_kitti = '/data/lorenzo-data/annotations/kitti/scale_2_july'
|
||||
self.dir_gt_kitti = 'data/kitti/gt_activity'
|
||||
self.dir_kk = os.path.join('data', 'kitti', 'calib')
|
||||
self.THRESHOLD_PROB = 0.25 # Concordance for samples
|
||||
self.THRESHOLD_DIST = 2 # Threshold to check distance of people
|
||||
self.RADII = (0.3, 0.5, 1) # expected radii of the o-space
|
||||
self.PIFPAF_CONF = 0.3
|
||||
self.SOCIAL_DISTANCE = True
|
||||
# ---------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Load model
|
||||
device = torch.device('cpu')
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device('cuda')
|
||||
self.monoloco = Loco(model=args.model, net=args.net,
|
||||
device=device, n_dropout=args.n_dropout, p_dropout=args.dropout)
|
||||
self.all_pred = defaultdict(list)
|
||||
self.all_gt = defaultdict(list)
|
||||
assert args.dataset in ('collective', 'kitti')
|
||||
|
||||
def eval_collective(self):
|
||||
"""Parse Collective Activity Dataset and predict if people are talking or not"""
|
||||
|
||||
for fold in self.path_collective:
|
||||
images = glob.glob(fold + '/*.jpg')
|
||||
initial_path = os.path.join(fold, 'frame0001.jpg')
|
||||
with open(initial_path, 'rb') as f:
|
||||
image = Image.open(f).convert('RGB')
|
||||
im_size = image.size
|
||||
|
||||
for idx, im_path in enumerate(images):
|
||||
|
||||
# Collect PifPaf files and calibration
|
||||
basename = os.path.basename(im_path)
|
||||
extension = '.pifpaf.json'
|
||||
path_pif = os.path.join(fold, basename + extension)
|
||||
annotations = open_annotations(path_pif)
|
||||
kk, _ = factory_for_gt(im_size, verbose=False)
|
||||
|
||||
# Collect corresponding gt files (ys_gt: 1 or 0)
|
||||
boxes_gt, ys_gt = parse_gt_collective(fold, path_pif)
|
||||
|
||||
# Run Monoloco
|
||||
dic_out, boxes = self.run_monoloco(annotations, kk, im_size=im_size)
|
||||
|
||||
# Match and update stats
|
||||
matches = get_iou_matches(boxes, boxes_gt, iou_min=0.3)
|
||||
|
||||
# Estimate activity
|
||||
categories = [os.path.basename(fold)] * len(boxes_gt)
|
||||
self.estimate_activity(dic_out, matches, ys_gt, categories=categories)
|
||||
|
||||
# Print Results
|
||||
cout_results(self.cnt, self.all_gt, self.all_pred, categories=self.folders_collective)
|
||||
|
||||
def eval_kitti(self):
|
||||
"""Parse KITTI Dataset and predict if people are talking or not"""
|
||||
|
||||
from ..utils import factory_file
|
||||
files = glob.glob(self.dir_gt_kitti + '/*.txt')
|
||||
# files = [self.dir_gt_kitti + '/001782.txt']
|
||||
assert files, "Empty directory"
|
||||
|
||||
for file in files:
|
||||
|
||||
# Collect PifPaf files and calibration
|
||||
basename, _ = os.path.splitext(os.path.basename(file))
|
||||
path_calib = os.path.join(self.dir_kk, basename + '.txt')
|
||||
annotations, kk, tt = factory_file(path_calib, self.dir_ann_kitti, basename)
|
||||
|
||||
# Collect corresponding gt files (ys_gt: 1 or 0)
|
||||
path_gt = os.path.join(self.dir_gt_kitti, basename + '.txt')
|
||||
boxes_gt, ys_gt, difficulties = parse_gt_kitti(path_gt)
|
||||
|
||||
# Run Monoloco
|
||||
dic_out, boxes = self.run_monoloco(annotations, kk, im_size=(1242, 374))
|
||||
|
||||
# Match and update stats
|
||||
matches = get_iou_matches(boxes, boxes_gt, iou_min=0.3)
|
||||
|
||||
# Estimate activity
|
||||
self.estimate_activity(dic_out, matches, ys_gt, categories=difficulties)
|
||||
|
||||
# Print Results
|
||||
cout_results(self.cnt, self.all_gt, self.all_pred, categories=('easy', 'moderate', 'hard'))
|
||||
|
||||
def estimate_activity(self, dic_out, matches, ys_gt, categories):
|
||||
|
||||
# Calculate social interaction
|
||||
angles = dic_out['angles']
|
||||
dds = dic_out['dds_pred']
|
||||
stds = dic_out['stds_ale']
|
||||
confs = dic_out['confs']
|
||||
xz_centers = [[xx[0], xx[2]] for xx in dic_out['xyz_pred']]
|
||||
|
||||
# Count gt statistics
|
||||
for key in categories:
|
||||
self.cnt['gt'][key] += 1
|
||||
self.cnt['gt']['all'] += 1
|
||||
|
||||
for i_m, (idx, idx_gt) in enumerate(matches):
|
||||
|
||||
# Select keys to update resultd for Collective or KITTI
|
||||
keys = ('all', categories[idx_gt])
|
||||
|
||||
# Run social interactions rule
|
||||
flag = social_interactions(idx, xz_centers, angles, dds,
|
||||
stds=stds,
|
||||
threshold_prob=self.THRESHOLD_PROB,
|
||||
threshold_dist=self.THRESHOLD_DIST,
|
||||
radii=self.RADII,
|
||||
social_distance=self.SOCIAL_DISTANCE)
|
||||
# Accumulate results
|
||||
for key in keys:
|
||||
self.all_pred[key].append(flag)
|
||||
self.all_gt[key].append(ys_gt[idx_gt])
|
||||
self.cnt['pred'][key] += 1
|
||||
|
||||
def run_monoloco(self, annotations, kk, im_size=None):
|
||||
|
||||
boxes, keypoints = preprocess_pifpaf(annotations, im_size, enlarge_boxes=True, min_conf=self.PIFPAF_CONF)
|
||||
dic_out = self.monoloco.forward(keypoints, kk)
|
||||
dic_out = self.monoloco.post_process(dic_out, boxes, keypoints, kk, dic_gt=None, reorder=False, verbose=False)
|
||||
|
||||
return dic_out, boxes
|
||||
|
||||
|
||||
def parse_gt_collective(fold, path_pif):
|
||||
"""Parse both gt and binary label (1/0) for talking or not"""
|
||||
|
||||
with open(os.path.join(fold, "annotations.txt"), "r") as ff:
|
||||
reader = csv.reader(ff, delimiter='\t')
|
||||
dic_frames = defaultdict(lambda: defaultdict(list))
|
||||
for idx, line in enumerate(reader):
|
||||
box = convert_box(line[1:5])
|
||||
cat = convert_category(line[5])
|
||||
dic_frames[line[0]]['boxes'].append(box)
|
||||
dic_frames[line[0]]['y'].append(cat)
|
||||
|
||||
frame = extract_frame_number(path_pif)
|
||||
boxes_gt = dic_frames[frame]['boxes']
|
||||
ys_gt = np.array(dic_frames[frame]['y'])
|
||||
return boxes_gt, ys_gt
|
||||
|
||||
|
||||
def parse_gt_kitti(path_gt):
|
||||
"""Parse both gt and binary label (1/0) for talking or not"""
|
||||
boxes_gt = []
|
||||
ys = []
|
||||
difficulties = []
|
||||
with open(path_gt, "r") as f_gt:
|
||||
for line_gt in f_gt:
|
||||
line = line_gt.split()
|
||||
box = [float(x) for x in line[4:8]]
|
||||
boxes_gt.append(box)
|
||||
y = int(line[-1])
|
||||
assert y in (1, 0), "Expected to be binary (1/0)"
|
||||
ys.append(y)
|
||||
trunc = float(line[1])
|
||||
occ = int(line[2])
|
||||
difficulties.append(get_difficulty(box, trunc, occ))
|
||||
return boxes_gt, ys, difficulties
|
||||
|
||||
|
||||
def cout_results(cnt, all_gt, all_pred, categories=()):
|
||||
|
||||
categories = list(categories)
|
||||
categories.append('all')
|
||||
print('-' * 80)
|
||||
|
||||
# Split by folders for collective activity
|
||||
for key in categories:
|
||||
acc = accuracy_score(all_gt[key], all_pred[key])
|
||||
print("Accuracy of category {}: {:.2f}% , Recall: {:.2f}%, #: {}, Predicted positive: {:.2f}%"
|
||||
.format(key,
|
||||
acc * 100,
|
||||
cnt['pred'][key] / cnt['gt'][key]*100,
|
||||
cnt['pred'][key],
|
||||
sum(all_gt[key]) / len(all_gt[key]) * 100))
|
||||
|
||||
# Final Accuracy
|
||||
acc = accuracy_score(all_gt['all'], all_pred['all'])
|
||||
print('-' * 80)
|
||||
print("Final Accuracy: {:.2f}%".format(acc * 100))
|
||||
print('-' * 80)
|
||||
|
||||
|
||||
def convert_box(box_str):
|
||||
"""from string with left and center to standard """
|
||||
box = [float(el) for el in box_str] # x, y, w h
|
||||
box[2] += box[0]
|
||||
box[3] += box[1]
|
||||
return box
|
||||
|
||||
|
||||
def convert_category(cat):
|
||||
"""Talking = 6"""
|
||||
if cat == '6':
|
||||
return 1
|
||||
return 0
|
||||
|
||||
|
||||
def extract_frame_number(path):
|
||||
"""extract frame number from path"""
|
||||
name = os.path.basename(path)
|
||||
if name[5] == '0':
|
||||
frame = name[6:9]
|
||||
else:
|
||||
frame = name[5:9]
|
||||
return frame
|
||||
432
monstereo/eval/eval_kitti.py
Normal file
432
monstereo/eval/eval_kitti.py
Normal file
@ -0,0 +1,432 @@
|
||||
"""
|
||||
Evaluate MonStereo code on KITTI dataset using ALE metric
|
||||
"""
|
||||
|
||||
# pylint: disable=attribute-defined-outside-init
|
||||
|
||||
import os
|
||||
import math
|
||||
import logging
|
||||
import datetime
|
||||
from collections import defaultdict
|
||||
|
||||
from tabulate import tabulate
|
||||
|
||||
from ..utils import get_iou_matches, get_task_error, get_pixel_error, check_conditions, \
|
||||
get_difficulty, split_training, parse_ground_truth, get_iou_matches_matrix
|
||||
from ..visuals import show_results, show_spread, show_task_error, show_box_plot
|
||||
|
||||
|
||||
class EvalKitti:
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
CLUSTERS = ('easy', 'moderate', 'hard', 'all', '3', '5', '7', '9', '11', '13', '15', '17', '19', '21', '23', '25',
|
||||
'27', '29', '31', '49')
|
||||
ALP_THRESHOLDS = ('<0.5m', '<1m', '<2m')
|
||||
OUR_METHODS = ['geometric', 'monoloco', 'monoloco_pp', 'pose', 'reid', 'monstereo']
|
||||
METHODS_MONO = ['m3d', 'monopsr']
|
||||
METHODS_STEREO = ['3dop', 'psf', 'pseudo-lidar', 'e2e', 'oc-stereo']
|
||||
BASELINES = ['task_error', 'pixel_error']
|
||||
HEADERS = ('method', '<0.5', '<1m', '<2m', 'easy', 'moderate', 'hard', 'all')
|
||||
CATEGORIES = ('pedestrian',)
|
||||
|
||||
def __init__(self, thresh_iou_monoloco=0.3, thresh_iou_base=0.3, thresh_conf_monoloco=0.2, thresh_conf_base=0.5,
|
||||
verbose=False):
|
||||
|
||||
self.main_dir = os.path.join('data', 'kitti')
|
||||
self.dir_gt = os.path.join(self.main_dir, 'gt')
|
||||
self.methods = self.OUR_METHODS + self.METHODS_MONO + self.METHODS_STEREO
|
||||
path_train = os.path.join('splits', 'kitti_train.txt')
|
||||
path_val = os.path.join('splits', 'kitti_val.txt')
|
||||
dir_logs = os.path.join('data', 'logs')
|
||||
assert dir_logs, "No directory to save final statistics"
|
||||
|
||||
now = datetime.datetime.now()
|
||||
now_time = now.strftime("%Y%m%d-%H%M")[2:]
|
||||
self.path_results = os.path.join(dir_logs, 'eval-' + now_time + '.json')
|
||||
self.verbose = verbose
|
||||
|
||||
self.dic_thresh_iou = {method: (thresh_iou_monoloco if method in self.OUR_METHODS
|
||||
else thresh_iou_base)
|
||||
for method in self.methods}
|
||||
self.dic_thresh_conf = {method: (thresh_conf_monoloco if method in self.OUR_METHODS
|
||||
else thresh_conf_base)
|
||||
for method in self.methods}
|
||||
self.dic_thresh_conf['monopsr'] += 0.3
|
||||
self.dic_thresh_conf['e2e-pl'] = -100 # They don't have enough detections
|
||||
self.dic_thresh_conf['oc-stereo'] = -100
|
||||
|
||||
# Extract validation images for evaluation
|
||||
names_gt = tuple(os.listdir(self.dir_gt))
|
||||
_, self.set_val = split_training(names_gt, path_train, path_val)
|
||||
|
||||
# self.set_val = ('002282.txt', )
|
||||
|
||||
# Define variables to save statistics
|
||||
self.dic_methods = self.errors = self.dic_stds = self.dic_stats = self.dic_cnt = self.cnt_gt = self.category \
|
||||
= None
|
||||
self.cnt = 0
|
||||
|
||||
def run(self):
|
||||
"""Evaluate Monoloco performances on ALP and ALE metrics"""
|
||||
for self.category in self.CATEGORIES:
|
||||
|
||||
# Initialize variables
|
||||
self.errors = defaultdict(lambda: defaultdict(list))
|
||||
self.dic_stds = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
|
||||
self.dic_stats = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float))))
|
||||
self.dic_cnt = defaultdict(int)
|
||||
self.cnt_gt = defaultdict(int)
|
||||
|
||||
# Iterate over each ground truth file in the training set
|
||||
# self.set_val = ('000063.txt',)
|
||||
for name in self.set_val:
|
||||
path_gt = os.path.join(self.dir_gt, name)
|
||||
self.name = name
|
||||
|
||||
# Iterate over each line of the gt file and save box location and distances
|
||||
out_gt = parse_ground_truth(path_gt, self.category)
|
||||
methods_out = defaultdict(tuple) # Save all methods for comparison
|
||||
|
||||
# Count ground_truth:
|
||||
boxes_gt, ys, truncs_gt, occs_gt = out_gt
|
||||
for idx, box in enumerate(boxes_gt):
|
||||
mode = get_difficulty(box, truncs_gt[idx], occs_gt[idx])
|
||||
self.cnt_gt[mode] += 1
|
||||
self.cnt_gt['all'] += 1
|
||||
|
||||
if out_gt[0]:
|
||||
for method in self.methods:
|
||||
# Extract annotations
|
||||
dir_method = os.path.join(self.main_dir, method)
|
||||
assert os.path.exists(dir_method), "directory of the method %s does not exists" % method
|
||||
path_method = os.path.join(dir_method, name)
|
||||
methods_out[method] = self._parse_txts(path_method, method=method)
|
||||
|
||||
# Compute the error with ground truth
|
||||
self._estimate_error(out_gt, methods_out[method], method=method)
|
||||
|
||||
# Update statistics of errors and uncertainty
|
||||
for key in self.errors:
|
||||
add_true_negatives(self.errors[key], self.cnt_gt['all'])
|
||||
for clst in self.CLUSTERS[:-1]:
|
||||
|
||||
try:
|
||||
get_statistics(self.dic_stats['test'][key][clst],
|
||||
self.errors[key][clst],
|
||||
self.dic_stds[key][clst], key)
|
||||
except ZeroDivisionError:
|
||||
print('\n'+'-'*100 + '\n'+f'ERROR: method {key} at cluster {clst} is empty' + '\n'+'-'*100+'\n')
|
||||
raise
|
||||
|
||||
# Show statistics
|
||||
print('\n' + self.category.upper() + ':')
|
||||
self.show_statistics()
|
||||
|
||||
def printer(self, show, save):
|
||||
if save or show:
|
||||
show_results(self.dic_stats, self.CLUSTERS, show, save)
|
||||
show_spread(self.dic_stats, self.CLUSTERS, show, save)
|
||||
show_box_plot(self.errors, self.CLUSTERS, show, save)
|
||||
show_task_error(show, save)
|
||||
|
||||
def _parse_txts(self, path, method):
|
||||
|
||||
boxes = []
|
||||
dds = []
|
||||
cat = []
|
||||
|
||||
if method == 'psf':
|
||||
path = os.path.splitext(path)[0] + '.png.txt'
|
||||
if method in self.OUR_METHODS:
|
||||
bis, epis = [], []
|
||||
output = (boxes, dds, cat, bis, epis)
|
||||
else:
|
||||
output = (boxes, dds, cat)
|
||||
try:
|
||||
with open(path, "r") as ff:
|
||||
for line_str in ff:
|
||||
if method == 'psf':
|
||||
line = line_str.split(", ")
|
||||
box = [float(x) for x in line[4:8]]
|
||||
boxes.append(box)
|
||||
loc = ([float(x) for x in line[11:14]])
|
||||
dd = math.sqrt(loc[0] ** 2 + loc[1] ** 2 + loc[2] ** 2)
|
||||
dds.append(dd)
|
||||
cat.append('Pedestrian')
|
||||
else:
|
||||
line = line_str.split()
|
||||
if check_conditions(line,
|
||||
category='pedestrian',
|
||||
method=method,
|
||||
thresh=self.dic_thresh_conf[method]):
|
||||
box = [float(x) for x in line[4:8]]
|
||||
box.append(float(line[15])) # Add confidence
|
||||
loc = ([float(x) for x in line[11:14]])
|
||||
dd = math.sqrt(loc[0] ** 2 + loc[1] ** 2 + loc[2] ** 2)
|
||||
cat.append(line[0])
|
||||
boxes.append(box)
|
||||
dds.append(dd)
|
||||
if method in self.OUR_METHODS:
|
||||
bis.append(float(line[16]))
|
||||
epis.append(float(line[17]))
|
||||
self.dic_cnt[method] += 1
|
||||
|
||||
return output
|
||||
except FileNotFoundError:
|
||||
return output
|
||||
|
||||
def _estimate_error(self, out_gt, out, method):
|
||||
"""Estimate localization error"""
|
||||
|
||||
boxes_gt, ys, truncs_gt, occs_gt = out_gt
|
||||
|
||||
if method in self.OUR_METHODS:
|
||||
boxes, dds, cat, bis, epis = out
|
||||
else:
|
||||
boxes, dds, cat = out
|
||||
|
||||
if method == 'psf':
|
||||
matches = get_iou_matches_matrix(boxes, boxes_gt, self.dic_thresh_iou[method])
|
||||
else:
|
||||
matches = get_iou_matches(boxes, boxes_gt, self.dic_thresh_iou[method])
|
||||
|
||||
for (idx, idx_gt) in matches:
|
||||
# Update error if match is found
|
||||
dd_gt = ys[idx_gt][3]
|
||||
zz_gt = ys[idx_gt][2]
|
||||
mode = get_difficulty(boxes_gt[idx_gt], truncs_gt[idx_gt], occs_gt[idx_gt])
|
||||
|
||||
if cat[idx].lower() in (self.category, 'pedestrian'):
|
||||
self.update_errors(dds[idx], dd_gt, mode, self.errors[method])
|
||||
if method == 'monoloco':
|
||||
dd_task_error = dd_gt + (get_task_error(zz_gt))**2
|
||||
dd_pixel_error = dd_gt + get_pixel_error(zz_gt)
|
||||
self.update_errors(dd_task_error, dd_gt, mode, self.errors['task_error'])
|
||||
self.update_errors(dd_pixel_error, dd_gt, mode, self.errors['pixel_error'])
|
||||
if method in self.OUR_METHODS:
|
||||
epi = max(epis[idx], bis[idx])
|
||||
self.update_uncertainty(bis[idx], epi, dds[idx], dd_gt, mode, self.dic_stds[method])
|
||||
|
||||
def update_errors(self, dd, dd_gt, cat, errors):
|
||||
"""Compute and save errors between a single box and the gt box which match"""
|
||||
diff = abs(dd - dd_gt)
|
||||
clst = find_cluster(dd_gt, self.CLUSTERS[4:])
|
||||
errors['all'].append(diff)
|
||||
errors[cat].append(diff)
|
||||
errors[clst].append(diff)
|
||||
|
||||
# Check if the distance is less than one or 2 meters
|
||||
if diff <= 0.5:
|
||||
errors['<0.5m'].append(1)
|
||||
else:
|
||||
errors['<0.5m'].append(0)
|
||||
|
||||
if diff <= 1:
|
||||
errors['<1m'].append(1)
|
||||
else:
|
||||
errors['<1m'].append(0)
|
||||
|
||||
if diff <= 2:
|
||||
errors['<2m'].append(1)
|
||||
else:
|
||||
errors['<2m'].append(0)
|
||||
|
||||
def update_uncertainty(self, std_ale, std_epi, dd, dd_gt, mode, dic_stds):
|
||||
|
||||
clst = find_cluster(dd_gt, self.CLUSTERS[4:])
|
||||
dic_stds['all']['ale'].append(std_ale)
|
||||
dic_stds[clst]['ale'].append(std_ale)
|
||||
dic_stds[mode]['ale'].append(std_ale)
|
||||
dic_stds['all']['epi'].append(std_epi)
|
||||
dic_stds[clst]['epi'].append(std_epi)
|
||||
dic_stds[mode]['epi'].append(std_epi)
|
||||
dic_stds['all']['epi_rel'].append(std_epi / dd)
|
||||
dic_stds[clst]['epi_rel'].append(std_epi / dd)
|
||||
dic_stds[mode]['epi_rel'].append(std_epi / dd)
|
||||
|
||||
# Number of annotations inside the confidence interval
|
||||
std = std_epi if std_epi > 0 else std_ale # consider aleatoric uncertainty if epistemic is not calculated
|
||||
if abs(dd - dd_gt) <= std:
|
||||
dic_stds['all']['interval'].append(1)
|
||||
dic_stds[clst]['interval'].append(1)
|
||||
dic_stds[mode]['interval'].append(1)
|
||||
else:
|
||||
dic_stds['all']['interval'].append(0)
|
||||
dic_stds[clst]['interval'].append(0)
|
||||
dic_stds[mode]['interval'].append(0)
|
||||
|
||||
# Annotations at risk inside the confidence interval
|
||||
if dd_gt <= dd:
|
||||
dic_stds['all']['at_risk'].append(1)
|
||||
dic_stds[clst]['at_risk'].append(1)
|
||||
dic_stds[mode]['at_risk'].append(1)
|
||||
|
||||
if abs(dd - dd_gt) <= std_epi:
|
||||
dic_stds['all']['at_risk-interval'].append(1)
|
||||
dic_stds[clst]['at_risk-interval'].append(1)
|
||||
dic_stds[mode]['at_risk-interval'].append(1)
|
||||
else:
|
||||
dic_stds['all']['at_risk-interval'].append(0)
|
||||
dic_stds[clst]['at_risk-interval'].append(0)
|
||||
dic_stds[mode]['at_risk-interval'].append(0)
|
||||
|
||||
else:
|
||||
dic_stds['all']['at_risk'].append(0)
|
||||
dic_stds[clst]['at_risk'].append(0)
|
||||
dic_stds[mode]['at_risk'].append(0)
|
||||
|
||||
# Precision of uncertainty
|
||||
eps = 1e-4
|
||||
task_error = get_task_error(dd)
|
||||
prec_1 = abs(dd - dd_gt) / (std_epi + eps)
|
||||
|
||||
prec_2 = abs(std_epi - task_error)
|
||||
dic_stds['all']['prec_1'].append(prec_1)
|
||||
dic_stds[clst]['prec_1'].append(prec_1)
|
||||
dic_stds[mode]['prec_1'].append(prec_1)
|
||||
dic_stds['all']['prec_2'].append(prec_2)
|
||||
dic_stds[clst]['prec_2'].append(prec_2)
|
||||
dic_stds[mode]['prec_2'].append(prec_2)
|
||||
|
||||
def show_statistics(self):
|
||||
|
||||
all_methods = self.methods + self.BASELINES
|
||||
print('-'*90)
|
||||
self.summary_table(all_methods)
|
||||
|
||||
# Uncertainty
|
||||
for net in ('monoloco_pp', 'monstereo'):
|
||||
print(('-'*100))
|
||||
print(net.upper())
|
||||
for clst in ('easy', 'moderate', 'hard', 'all'):
|
||||
print(" Annotations in clst {}: {:.0f}, Recall: {:.1f}. Precision: {:.2f}, Relative size is {:.1f} %"
|
||||
.format(clst,
|
||||
self.dic_stats['test'][net][clst]['cnt'],
|
||||
self.dic_stats['test'][net][clst]['interval']*100,
|
||||
self.dic_stats['test'][net][clst]['prec_1'],
|
||||
self.dic_stats['test'][net][clst]['epi_rel']*100))
|
||||
|
||||
if self.verbose:
|
||||
for key in all_methods:
|
||||
print(key.upper())
|
||||
for clst in self.CLUSTERS[:4]:
|
||||
print(" {} Average error in cluster {}: {:.2f} with a max error of {:.1f}, "
|
||||
"for {} annotations"
|
||||
.format(key, clst, self.dic_stats['test'][key][clst]['mean'],
|
||||
self.dic_stats['test'][key][clst]['max'],
|
||||
self.dic_stats['test'][key][clst]['cnt']))
|
||||
|
||||
for perc in self.ALP_THRESHOLDS:
|
||||
print("{} Instances with error {}: {:.2f} %"
|
||||
.format(key, perc, 100 * average(self.errors[key][perc])))
|
||||
|
||||
print("\nMatched annotations: {:.1f} %".format(self.errors[key]['matched']))
|
||||
print(" Detected annotations : {}/{} ".format(self.dic_cnt[key], self.cnt_gt['all']))
|
||||
print("-" * 100)
|
||||
|
||||
print("precision 1: {:.2f}".format(self.dic_stats['test']['monoloco']['all']['prec_1']))
|
||||
print("precision 2: {:.2f}".format(self.dic_stats['test']['monoloco']['all']['prec_2']))
|
||||
|
||||
def summary_table(self, all_methods):
|
||||
"""Tabulate table for ALP and ALE metrics"""
|
||||
|
||||
alp = [[str(100 * average(self.errors[key][perc]))[:5]
|
||||
for perc in ['<0.5m', '<1m', '<2m']]
|
||||
for key in all_methods]
|
||||
|
||||
ale = [[str(round(self.dic_stats['test'][key][clst]['mean'], 2))[:4] + ' [' +
|
||||
str(round(self.dic_stats['test'][key][clst]['cnt'] / self.cnt_gt[clst] * 100))[:2] + '%]'
|
||||
for clst in self.CLUSTERS[:4]]
|
||||
for key in all_methods]
|
||||
|
||||
results = [[key] + alp[idx] + ale[idx] for idx, key in enumerate(all_methods)]
|
||||
print(tabulate(results, headers=self.HEADERS))
|
||||
print('-' * 90 + '\n')
|
||||
|
||||
def stats_height(self):
|
||||
heights = []
|
||||
for name in self.set_val:
|
||||
path_gt = os.path.join(self.dir_gt, name)
|
||||
self.name = name
|
||||
# Iterate over each line of the gt file and save box location and distances
|
||||
out_gt = parse_ground_truth(path_gt, 'pedestrian')
|
||||
boxes_gt, ys, truncs_gt, occs_gt = out_gt
|
||||
for label in ys:
|
||||
heights.append(label[4])
|
||||
import numpy as np
|
||||
tail1, tail2 = np.nanpercentile(np.array(heights), [5, 95])
|
||||
print(average(heights))
|
||||
print(len(heights))
|
||||
print(tail1, tail2)
|
||||
|
||||
|
||||
def get_statistics(dic_stats, errors, dic_stds, key):
|
||||
"""Update statistics of a cluster"""
|
||||
|
||||
try:
|
||||
dic_stats['mean'] = average(errors)
|
||||
dic_stats['max'] = max(errors)
|
||||
dic_stats['cnt'] = len(errors)
|
||||
except ValueError:
|
||||
dic_stats['mean'] = - 1
|
||||
dic_stats['max'] = - 1
|
||||
dic_stats['cnt'] = - 1
|
||||
|
||||
if key in ('monoloco', 'monoloco_pp', 'monstereo'):
|
||||
dic_stats['std_ale'] = average(dic_stds['ale'])
|
||||
dic_stats['std_epi'] = average(dic_stds['epi'])
|
||||
dic_stats['epi_rel'] = average(dic_stds['epi_rel'])
|
||||
dic_stats['interval'] = average(dic_stds['interval'])
|
||||
dic_stats['at_risk'] = average(dic_stds['at_risk'])
|
||||
dic_stats['prec_1'] = average(dic_stds['prec_1'])
|
||||
dic_stats['prec_2'] = average(dic_stds['prec_2'])
|
||||
|
||||
|
||||
def add_true_negatives(err, cnt_gt):
|
||||
"""Update errors statistics of a specific method with missing detections"""
|
||||
|
||||
matched = len(err['all'])
|
||||
missed = cnt_gt - matched
|
||||
zeros = [0] * missed
|
||||
err['<0.5m'].extend(zeros)
|
||||
err['<1m'].extend(zeros)
|
||||
err['<2m'].extend(zeros)
|
||||
err['matched'] = 100 * matched / cnt_gt
|
||||
|
||||
|
||||
def find_cluster(dd, clusters):
|
||||
"""Find the correct cluster. Above the last cluster goes into "excluded (together with the ones from kitti cat"""
|
||||
|
||||
for idx, clst in enumerate(clusters[:-1]):
|
||||
if int(clst) < dd <= int(clusters[idx+1]):
|
||||
return clst
|
||||
return 'excluded'
|
||||
|
||||
|
||||
def extract_indices(idx_to_check, *args):
|
||||
"""
|
||||
Look if a given index j_gt is present in all the other series of indices (_, j)
|
||||
and return the corresponding one for argument
|
||||
|
||||
idx_check --> gt index to check for correspondences in other method
|
||||
idx_method --> index corresponding to the method
|
||||
idx_gt --> index gt of the method
|
||||
idx_pred --> index of the predicted box of the method
|
||||
indices --> list of predicted indices for each method corresponding to the ground truth index to check
|
||||
"""
|
||||
|
||||
checks = [False]*len(args)
|
||||
indices = []
|
||||
for idx_method, method in enumerate(args):
|
||||
for (idx_pred, idx_gt) in method:
|
||||
if idx_gt == idx_to_check:
|
||||
checks[idx_method] = True
|
||||
indices.append(idx_pred)
|
||||
return all(checks), indices
|
||||
|
||||
|
||||
def average(my_list):
|
||||
"""calculate mean of a list"""
|
||||
return sum(my_list) / len(my_list)
|
||||
238
monstereo/eval/eval_variance.py
Normal file
238
monstereo/eval/eval_variance.py
Normal file
@ -0,0 +1,238 @@
|
||||
|
||||
# pylint: disable=too-many-statements,cyclic-import, too-many-branches
|
||||
|
||||
"""Joints Analysis: Supplementary material of MonStereo"""
|
||||
|
||||
import json
|
||||
import os
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from .eval_kitti import find_cluster, average
|
||||
from ..visuals.figures import get_distances
|
||||
|
||||
COCO_KEYPOINTS = [
|
||||
'nose', # 0
|
||||
'left_eye', # 1
|
||||
'right_eye', # 2
|
||||
'left_ear', # 3
|
||||
'right_ear', # 4
|
||||
'left_shoulder', # 5
|
||||
'right_shoulder', # 6
|
||||
'left_elbow', # 7
|
||||
'right_elbow', # 8
|
||||
'left_wrist', # 9
|
||||
'right_wrist', # 10
|
||||
'left_hip', # 11
|
||||
'right_hip', # 12
|
||||
'left_knee', # 13
|
||||
'right_knee', # 14
|
||||
'left_ankle', # 15
|
||||
'right_ankle', # 16
|
||||
]
|
||||
|
||||
|
||||
def joints_variance(joints, clusters, dic_ms):
|
||||
# CLUSTERS = ('3', '5', '7', '9', '11', '13', '15', '17', '19', '21', '23', '25', '27', '29', '31', '49')
|
||||
BF = 0.54 * 721
|
||||
phase = 'train'
|
||||
methods = ('pifpaf', 'mask')
|
||||
dic_fin = {}
|
||||
|
||||
for method in methods:
|
||||
dic_var = defaultdict(lambda: defaultdict(list))
|
||||
dic_joints = defaultdict(list)
|
||||
dic_avg = defaultdict(lambda: defaultdict(float))
|
||||
path_joints = joints + '_' + method + '.json'
|
||||
|
||||
with open(path_joints, 'r') as f:
|
||||
dic_jo = json.load(f)
|
||||
|
||||
for idx, keypoint in enumerate(dic_jo[phase]['kps']):
|
||||
# if dic_jo[phase]['names'][idx] == '005856.txt' and dic_jo[phase]['Y'][idx][2] > 14:
|
||||
# aa = 4
|
||||
assert len(keypoint) < 2
|
||||
kps = np.array(keypoint[0])[:, :17]
|
||||
kps_r = np.array(keypoint[0])[:, 17:]
|
||||
disps = kps[0] - kps_r[0]
|
||||
zz = dic_jo[phase]['Y'][idx][2]
|
||||
disps_3 = get_variance(kps, kps_r, zz)
|
||||
disps_8 = get_variance_conf(kps, kps_r, num=8)
|
||||
disps_4 = get_variance_conf(kps, kps_r, num=4)
|
||||
disp_gt = BF / zz
|
||||
clst = find_cluster(zz, clusters) # 4 = '3' 35 = '31' 42 = 2 = 'excl'
|
||||
dic_var['std_d'][clst].append(disps.std())
|
||||
errors = np.minimum(30, np.abs(zz - BF / disps))
|
||||
dic_var['mean_dev'][clst].append(min(30, abs(zz - BF / np.median(disps))))
|
||||
dic_var['mean_3'][clst].append(min(30, abs(zz - BF / disps_3.mean())))
|
||||
dic_var['mean_8'][clst].append(min(30, abs(zz - BF / np.median(disps_8))))
|
||||
dic_var['mean_4'][clst].append(min(30, abs(zz - BF / np.median(disps_4))))
|
||||
arg_best = np.argmin(errors)
|
||||
conf = np.mean((kps[2][arg_best], kps_r[2][arg_best]))
|
||||
dic_var['mean_best'][clst].append(np.min(errors))
|
||||
dic_var['conf_best'][clst].append(conf)
|
||||
dic_var['conf'][clst].append(np.mean((np.mean(kps[2]), np.mean(kps_r[2]))))
|
||||
# dic_var['std_z'][clst].append(zzs.std())
|
||||
for ii, el in enumerate(disps):
|
||||
if abs(el-disp_gt) < 1:
|
||||
dic_var['rep'][clst].append(1)
|
||||
dic_joints[str(ii)].append(1)
|
||||
else:
|
||||
dic_var['rep'][clst].append(0)
|
||||
dic_joints[str(ii)].append(0)
|
||||
|
||||
for key in dic_var:
|
||||
for clst in clusters[:-1]: # 41 needs to be excluded (36 = '31')
|
||||
dic_avg[key][clst] = average(dic_var[key][clst])
|
||||
dic_fin[method] = dic_avg
|
||||
for key in dic_joints:
|
||||
dic_fin[method]['joints'][key] = average(dic_joints[key])
|
||||
dic_fin['monstereo'] = {clst: dic_ms[clst]['mean'] for clst in clusters[:-1]}
|
||||
variance_figures(dic_fin, clusters)
|
||||
|
||||
|
||||
def get_variance(kps, kps_r, zz):
|
||||
|
||||
thresh = 0.5 - zz / 100
|
||||
disps_2 = []
|
||||
disps = kps[0] - kps_r[0]
|
||||
arg_disp = np.argsort(disps)[::-1]
|
||||
|
||||
for idx in arg_disp[1:]:
|
||||
if kps[2][idx] > thresh and kps_r[2][idx] > thresh:
|
||||
disps_2.append(disps[idx])
|
||||
if len(disps_2) >= 3:
|
||||
return np.array(disps_2)
|
||||
return disps
|
||||
|
||||
|
||||
def get_variance_conf(kps, kps_r, num=8):
|
||||
|
||||
disps_conf = []
|
||||
confs = (kps[2, :] + kps_r[2, :]) / 2
|
||||
disps = kps[0] - kps_r[0]
|
||||
arg_disp = np.argsort(confs)[::-1]
|
||||
|
||||
for idx in arg_disp[:num]:
|
||||
disps_conf.append(disps[idx])
|
||||
return np.array(disps_conf)
|
||||
|
||||
|
||||
def variance_figures(dic_fin, clusters):
|
||||
"""Predicted confidence intervals and task error as a function of ground-truth distance"""
|
||||
|
||||
dir_out = 'docs'
|
||||
x_min = 3
|
||||
x_max = 43
|
||||
y_min = 0
|
||||
y_max = 1
|
||||
|
||||
plt.figure(0)
|
||||
plt.xlabel("Ground-truth distance [m]")
|
||||
plt.title("Repeatability by distance")
|
||||
plt.xlim(x_min, x_max)
|
||||
plt.ylim(y_min, y_max)
|
||||
plt.grid(linewidth=0.2)
|
||||
|
||||
xxs = get_distances(clusters)
|
||||
yys_p = [el for _, el in dic_fin['pifpaf']['rep'].items()]
|
||||
yys_m = [el for _, el in dic_fin['mask']['rep'].items()]
|
||||
plt.plot(xxs, yys_p, marker='s', label="PifPaf")
|
||||
plt.plot(xxs, yys_m, marker='o', label="Mask R-CNN")
|
||||
plt.tight_layout()
|
||||
plt.legend()
|
||||
path_fig = os.path.join(dir_out, 'repeatability.png')
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of repeatability saved in {}".format(path_fig))
|
||||
|
||||
plt.figure(1)
|
||||
plt.xlabel("Ground-truth distance [m]")
|
||||
plt.ylabel("[m]")
|
||||
plt.title("Depth error")
|
||||
plt.grid(linewidth=0.2)
|
||||
y_min = 0
|
||||
y_max = 2.7
|
||||
plt.ylim(y_min, y_max)
|
||||
yys_p = [el for _, el in dic_fin['pifpaf']['mean_dev'].items()]
|
||||
# yys_m = [el for _, el in dic_fin['mask']['mean_dev'].items()]
|
||||
yys_p_3 = [el for _, el in dic_fin['pifpaf']['mean_3'].items()]
|
||||
yys_p_8 = [el for _, el in dic_fin['pifpaf']['mean_8'].items()]
|
||||
yys_p_4 = [el for _, el in dic_fin['pifpaf']['mean_4'].items()]
|
||||
# yys_m_3 = [el for _, el in dic_fin['mask']['mean_3'].items()]
|
||||
yys_ms = [el for _, el in dic_fin['monstereo'].items()]
|
||||
yys_p_best = [el for _, el in dic_fin['pifpaf']['mean_best'].items()]
|
||||
plt.plot(xxs, yys_p_4, marker='o', linestyle=':', label="PifPaf (highest 4)")
|
||||
plt.plot(xxs, yys_p, marker='+', label="PifPaf (median)")
|
||||
# plt.plot(xxs, yys_m, marker='o', label="Mask R-CNN (median")
|
||||
plt.plot(xxs, yys_p_3, marker='s', linestyle='--', label="PifPaf (closest 3)")
|
||||
plt.plot(xxs, yys_p_8, marker='*', linestyle=':', label="PifPaf (highest 8)")
|
||||
plt.plot(xxs, yys_ms, marker='^', label="MonStereo")
|
||||
plt.plot(xxs, yys_p_best, marker='o', label="PifPaf (best)")
|
||||
# plt.plot(xxs, yys_m_3, marker='o', color='r', label="Mask R-CNN (closest 3)")
|
||||
# plt.plot(xxs, yys_mon, marker='o', color='b', label="Our MonStereo")
|
||||
|
||||
plt.legend()
|
||||
plt.tight_layout()
|
||||
path_fig = os.path.join(dir_out, 'mean_deviation.png')
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of mean deviation saved in {}".format(path_fig))
|
||||
|
||||
plt.figure(2)
|
||||
plt.xlabel("Ground-truth distance [m]")
|
||||
plt.ylabel("Pixels")
|
||||
plt.title("Standard deviation of joints disparity")
|
||||
yys_p = [el for _, el in dic_fin['pifpaf']['std_d'].items()]
|
||||
yys_m = [el for _, el in dic_fin['mask']['std_d'].items()]
|
||||
yys_p_z = [el for _, el in dic_fin['pifpaf']['std_z'].items()]
|
||||
yys_m_z = [el for _, el in dic_fin['mask']['std_z'].items()]
|
||||
plt.plot(xxs, yys_p, marker='s', label="PifPaf")
|
||||
plt.plot(xxs, yys_m, marker='o', label="Mask R-CNN")
|
||||
# plt.plot(xxs, yys_p_z, marker='s', color='b', label="PifPaf (meters)")
|
||||
# plt.plot(xxs, yys_m_z, marker='o', color='r', label="Mask R-CNN (meters)")
|
||||
|
||||
plt.grid(linewidth=0.2)
|
||||
plt.legend()
|
||||
path_fig = os.path.join(dir_out, 'std_joints.png')
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of standard deviation of joints by distance in {}".format(path_fig))
|
||||
|
||||
plt.figure(3)
|
||||
# plt.style.use('ggplot')
|
||||
width = 0.35
|
||||
xxs = np.arange(len(COCO_KEYPOINTS))
|
||||
yys_p = [el for _, el in dic_fin['pifpaf']['joints'].items()]
|
||||
yys_m = [el for _, el in dic_fin['mask']['joints'].items()]
|
||||
plt.bar(xxs, yys_p, width, color='C0', label='Pifpaf')
|
||||
plt.bar(xxs + width, yys_m, width, color='C1', label='Mask R-CNN')
|
||||
plt.ylim(0, 1)
|
||||
|
||||
plt.xlabel("Keypoints")
|
||||
plt.title("Repeatability by keypoint type")
|
||||
|
||||
plt.xticks(xxs + width / 2, xxs)
|
||||
plt.legend(loc='best')
|
||||
path_fig = os.path.join(dir_out, 'repeatability_2.png')
|
||||
plt.savefig(path_fig)
|
||||
plt.close('all')
|
||||
print("Figure of standard deviation of joints by keypointd in {}".format(path_fig))
|
||||
|
||||
plt.figure(4)
|
||||
plt.xlabel("Ground-truth distance [m]")
|
||||
plt.ylabel("Confidence")
|
||||
plt.grid(linewidth=0.2)
|
||||
xxs = get_distances(clusters)
|
||||
yys_p_conf = [el for _, el in dic_fin['pifpaf']['conf'].items()]
|
||||
yys_p_conf_best = [el for _, el in dic_fin['pifpaf']['conf_best'].items()]
|
||||
yys_m_conf = [el for _, el in dic_fin['mask']['conf'].items()]
|
||||
yys_m_conf_best = [el for _, el in dic_fin['mask']['conf_best'].items()]
|
||||
plt.plot(xxs, yys_p_conf_best, marker='s', color='lightblue', label="PifPaf (best)")
|
||||
plt.plot(xxs, yys_p_conf, marker='s', color='b', label="PifPaf (mean)")
|
||||
plt.plot(xxs, yys_m_conf_best, marker='^', color='darkorange', label="Mask (best)")
|
||||
plt.plot(xxs, yys_m_conf, marker='o', color='r', label="Mask R-CNN (mean)")
|
||||
plt.legend()
|
||||
plt.tight_layout()
|
||||
path_fig = os.path.join(dir_out, 'confidence.png')
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of confidence saved in {}".format(path_fig))
|
||||
270
monstereo/eval/generate_kitti.py
Normal file
270
monstereo/eval/generate_kitti.py
Normal file
@ -0,0 +1,270 @@
|
||||
|
||||
#pylint: disable=too-many-branches
|
||||
|
||||
"""
|
||||
Run MonoLoco/MonStereo and converts annotations into KITTI format
|
||||
"""
|
||||
|
||||
import os
|
||||
import math
|
||||
from collections import defaultdict
|
||||
|
||||
import torch
|
||||
|
||||
from ..network import Loco
|
||||
from ..network.process import preprocess_pifpaf
|
||||
from ..network.geom_baseline import geometric_coordinates
|
||||
from ..utils import get_keypoints, pixel_to_camera, factory_file, factory_basename, make_new_directory, get_category, \
|
||||
xyz_from_distance, read_and_rewrite
|
||||
from .stereo_baselines import baselines_association
|
||||
from .reid_baseline import get_reid_features, ReID
|
||||
|
||||
|
||||
class GenerateKitti:
|
||||
|
||||
METHODS = ['monstereo', 'monoloco_pp', 'monoloco', 'geometric']
|
||||
|
||||
def __init__(self, model, dir_ann, p_dropout=0.2, n_dropout=0, hidden_size=1024):
|
||||
|
||||
# Load monoloco
|
||||
use_cuda = torch.cuda.is_available()
|
||||
device = torch.device("cuda" if use_cuda else "cpu")
|
||||
|
||||
if 'monstereo' in self.METHODS:
|
||||
self.monstereo = Loco(model=model, net='monstereo', device=device, n_dropout=n_dropout, p_dropout=p_dropout,
|
||||
linear_size=hidden_size)
|
||||
# model_mono_pp = 'data/models/monoloco-191122-1122.pkl' # KITTI_p
|
||||
# model_mono_pp = 'data/models/monoloco-191018-1459.pkl' # nuScenes_p
|
||||
model_mono_pp = 'data/models/stereoloco-200604-0949.pkl' # KITTI_pp
|
||||
# model_mono_pp = 'data/models/stereoloco-200608-1550.pkl' # nuScenes_pp
|
||||
|
||||
if 'monoloco_pp' in self.METHODS:
|
||||
self.monoloco_pp = Loco(model=model_mono_pp, net='monoloco_pp', device=device, n_dropout=n_dropout,
|
||||
p_dropout=p_dropout)
|
||||
|
||||
if 'monoloco' in self.METHODS:
|
||||
model_mono = 'data/models/monoloco-190717-0952.pkl' # KITTI
|
||||
# model_mono = 'data/models/monoloco-190719-0923.pkl' # NuScenes
|
||||
self.monoloco = Loco(model=model_mono, net='monoloco', device=device, n_dropout=n_dropout,
|
||||
p_dropout=p_dropout, linear_size=256)
|
||||
self.dir_ann = dir_ann
|
||||
|
||||
# Extract list of pifpaf files in validation images
|
||||
self.dir_gt = os.path.join('data', 'kitti', 'gt')
|
||||
self.dir_gt_new = os.path.join('data', 'kitti', 'gt_new')
|
||||
self.set_basename = factory_basename(dir_ann, self.dir_gt)
|
||||
self.dir_kk = os.path.join('data', 'kitti', 'calib')
|
||||
self.dir_byc = '/data/lorenzo-data/kitti/object_detection/left'
|
||||
|
||||
# For quick testing
|
||||
# ------------------------------------------------------------------------------------------------------------
|
||||
# self.set_basename = ('001782',)
|
||||
# self.set_basename = ('002282',)
|
||||
# ------------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Calculate stereo baselines
|
||||
# self.baselines = ['pose', 'reid']
|
||||
self.baselines = []
|
||||
self.cnt_disparity = defaultdict(int)
|
||||
self.cnt_no_stereo = 0
|
||||
self.dir_images = os.path.join('data', 'kitti', 'images')
|
||||
self.dir_images_r = os.path.join('data', 'kitti', 'images_r')
|
||||
# ReID Baseline
|
||||
if 'reid' in self.baselines:
|
||||
weights_path = 'data/models/reid_model_market.pkl'
|
||||
self.reid_net = ReID(weights_path=weights_path, device=device, num_classes=751, height=256, width=128)
|
||||
|
||||
def run(self):
|
||||
"""Run Monoloco and save txt files for KITTI evaluation"""
|
||||
|
||||
cnt_ann = cnt_file = cnt_no_file = 0
|
||||
dir_out = {key: os.path.join('data', 'kitti', key) for key in self.METHODS}
|
||||
print("\n")
|
||||
for key in self.METHODS:
|
||||
make_new_directory(dir_out[key])
|
||||
|
||||
for key in self.baselines:
|
||||
dir_out[key] = os.path.join('data', 'kitti', key)
|
||||
make_new_directory(dir_out[key])
|
||||
print("Created empty output directory for {}".format(key))
|
||||
|
||||
# Run monoloco over the list of images
|
||||
for basename in self.set_basename:
|
||||
path_calib = os.path.join(self.dir_kk, basename + '.txt')
|
||||
annotations, kk, tt = factory_file(path_calib, self.dir_ann, basename)
|
||||
boxes, keypoints = preprocess_pifpaf(annotations, im_size=(1242, 374))
|
||||
cat = get_category(keypoints, os.path.join(self.dir_byc, basename + '.json'))
|
||||
if keypoints:
|
||||
annotations_r, _, _ = factory_file(path_calib, self.dir_ann, basename, mode='right')
|
||||
_, keypoints_r = preprocess_pifpaf(annotations_r, im_size=(1242, 374))
|
||||
|
||||
cnt_ann += len(boxes)
|
||||
cnt_file += 1
|
||||
all_inputs, all_outputs = {}, {}
|
||||
|
||||
# STEREOLOCO
|
||||
dic_out = self.monstereo.forward(keypoints, kk, keypoints_r=keypoints_r)
|
||||
all_outputs['monstereo'] = [dic_out['xyzd'], dic_out['bi'], dic_out['epi'],
|
||||
dic_out['yaw'], dic_out['h'], dic_out['w'], dic_out['l']]
|
||||
|
||||
# MONOLOCO++
|
||||
if 'monoloco_pp' in self.METHODS:
|
||||
dic_out = self.monoloco_pp.forward(keypoints, kk)
|
||||
all_outputs['monoloco_pp'] = [dic_out['xyzd'], dic_out['bi'], dic_out['epi'],
|
||||
dic_out['yaw'], dic_out['h'], dic_out['w'], dic_out['l']]
|
||||
zzs = [float(el[2]) for el in dic_out['xyzd']]
|
||||
|
||||
# MONOLOCO
|
||||
if 'monoloco' in self.METHODS:
|
||||
dic_out = self.monoloco.forward(keypoints, kk)
|
||||
zzs_geom, xy_centers = geometric_coordinates(keypoints, kk, average_y=0.48)
|
||||
all_outputs['monoloco'] = [dic_out['d'], dic_out['bi'], dic_out['epi']] + [zzs_geom, xy_centers]
|
||||
all_outputs['geometric'] = all_outputs['monoloco']
|
||||
|
||||
params = [kk, tt]
|
||||
|
||||
for key in self.METHODS:
|
||||
path_txt = {key: os.path.join(dir_out[key], basename + '.txt')}
|
||||
save_txts(path_txt[key], boxes, all_outputs[key], params, mode=key, cat=cat)
|
||||
|
||||
# STEREO BASELINES
|
||||
if self.baselines:
|
||||
dic_xyz = self._run_stereo_baselines(basename, boxes, keypoints, zzs, path_calib)
|
||||
|
||||
for key in dic_xyz:
|
||||
all_outputs[key] = all_outputs['monoloco'].copy()
|
||||
all_outputs[key][0] = dic_xyz[key]
|
||||
all_inputs[key] = boxes
|
||||
|
||||
path_txt[key] = os.path.join(dir_out[key], basename + '.txt')
|
||||
save_txts(path_txt[key], all_inputs[key], all_outputs[key], params, mode='baseline', cat=cat)
|
||||
|
||||
print("\nSaved in {} txt {} annotations. Not found {} images".format(cnt_file, cnt_ann, cnt_no_file))
|
||||
|
||||
if 'monstereo' in self.METHODS:
|
||||
print("STEREO:")
|
||||
for key in self.baselines:
|
||||
print("Annotations corrected using {} baseline: {:.1f}%".format(
|
||||
key, self.cnt_disparity[key] / cnt_ann * 100))
|
||||
print("Maximum possible stereo associations: {:.1f}%".format(self.cnt_disparity['max'] / cnt_ann * 100))
|
||||
print("Not found {}/{} stereo files".format(self.cnt_no_stereo, cnt_file))
|
||||
|
||||
create_empty_files(dir_out) # Create empty files for official evaluation
|
||||
|
||||
def _run_stereo_baselines(self, basename, boxes, keypoints, zzs, path_calib):
|
||||
|
||||
annotations_r, _, _ = factory_file(path_calib, self.dir_ann, basename, mode='right')
|
||||
boxes_r, keypoints_r = preprocess_pifpaf(annotations_r, im_size=(1242, 374))
|
||||
_, kk, tt = factory_file(path_calib, self.dir_ann, basename)
|
||||
|
||||
uv_centers = get_keypoints(keypoints, mode='bottom') # Kitti uses the bottom center to calculate depth
|
||||
xy_centers = pixel_to_camera(uv_centers, kk, 1)
|
||||
|
||||
# Stereo baselines
|
||||
if keypoints_r:
|
||||
path_image = os.path.join(self.dir_images, basename + '.png')
|
||||
path_image_r = os.path.join(self.dir_images_r, basename + '.png')
|
||||
reid_features = get_reid_features(self.reid_net, boxes, boxes_r, path_image, path_image_r)
|
||||
dic_zzs, cnt = baselines_association(self.baselines, zzs, keypoints, keypoints_r, reid_features)
|
||||
|
||||
for key in cnt:
|
||||
self.cnt_disparity[key] += cnt[key]
|
||||
|
||||
else:
|
||||
self.cnt_no_stereo += 1
|
||||
dic_zzs = {key: zzs for key in self.baselines}
|
||||
|
||||
# Combine the stereo zz with x, y from 2D detection (no MonoLoco involved)
|
||||
dic_xyz = defaultdict(list)
|
||||
for key in dic_zzs:
|
||||
for idx, zz_base in enumerate(dic_zzs[key]):
|
||||
xx = float(xy_centers[idx][0]) * zz_base
|
||||
yy = float(xy_centers[idx][1]) * zz_base
|
||||
dic_xyz[key].append([xx, yy, zz_base])
|
||||
|
||||
return dic_xyz
|
||||
|
||||
|
||||
def save_txts(path_txt, all_inputs, all_outputs, all_params, mode='monoloco', cat=None):
|
||||
|
||||
assert mode in ('monoloco', 'monstereo', 'geometric', 'baseline', 'monoloco_pp')
|
||||
|
||||
if mode in ('monstereo', 'monoloco_pp'):
|
||||
xyzd, bis, epis, yaws, hs, ws, ls = all_outputs[:]
|
||||
xyz = xyzd[:, 0:3]
|
||||
tt = [0, 0, 0]
|
||||
elif mode in ('monoloco', 'geometric'):
|
||||
tt = [0, 0, 0]
|
||||
dds, bis, epis, zzs_geom, xy_centers = all_outputs[:]
|
||||
xyz = xyz_from_distance(dds, xy_centers)
|
||||
else:
|
||||
_, tt = all_params[:]
|
||||
xyz, bis, epis, zzs_geom, xy_centers = all_outputs[:]
|
||||
uv_boxes = all_inputs[:]
|
||||
assert len(uv_boxes) == len(list(xyz)), "Number of inputs different from number of outputs"
|
||||
|
||||
with open(path_txt, "w+") as ff:
|
||||
for idx, uv_box in enumerate(uv_boxes):
|
||||
|
||||
xx = float(xyz[idx][0]) - tt[0]
|
||||
yy = float(xyz[idx][1]) - tt[1]
|
||||
zz = float(xyz[idx][2]) - tt[2]
|
||||
|
||||
if mode == 'geometric':
|
||||
zz = zzs_geom[idx]
|
||||
|
||||
cam_0 = [xx, yy, zz]
|
||||
bi = float(bis[idx])
|
||||
epi = float(epis[idx])
|
||||
if mode in ('monstereo', 'monoloco_pp'):
|
||||
alpha, ry = float(yaws[0][idx]), float(yaws[1][idx])
|
||||
hwl = [float(hs[idx]), float(ws[idx]), float(ls[idx])]
|
||||
else:
|
||||
alpha, ry, hwl = -10., -10., [0, 0, 0]
|
||||
|
||||
# Set the scale to obtain (approximately) same recall at evaluation
|
||||
if mode == 'monstereo':
|
||||
conf_scale = 0.03
|
||||
elif mode == 'monoloco_pp':
|
||||
conf_scale = 0.033
|
||||
else:
|
||||
conf_scale = 0.055
|
||||
conf = conf_scale * (uv_box[-1]) / (bi / math.sqrt(xx ** 2 + yy * 2 + zz ** 2))
|
||||
|
||||
output_list = [alpha] + uv_box[:-1] + hwl + cam_0 + [ry, conf, bi, epi]
|
||||
category = cat[idx]
|
||||
if category < 0.1:
|
||||
ff.write("%s " % 'Pedestrian')
|
||||
else:
|
||||
ff.write("%s " % 'Cyclist')
|
||||
|
||||
ff.write("%i %i " % (-1, -1))
|
||||
for el in output_list:
|
||||
ff.write("%f " % el)
|
||||
ff.write("\n")
|
||||
|
||||
|
||||
def create_empty_files(dir_out):
|
||||
"""Create empty txt files to run official kitti metrics on MonStereo and all other methods"""
|
||||
|
||||
methods = ['pseudo-lidar', 'monopsr', '3dop', 'm3d', 'oc-stereo', 'e2e']
|
||||
methods = []
|
||||
dirs = [os.path.join('data', 'kitti', method) for method in methods]
|
||||
dirs_orig = [os.path.join('data', 'kitti', method + '-orig') for method in methods]
|
||||
|
||||
for di, di_orig in zip(dirs, dirs_orig):
|
||||
make_new_directory(di)
|
||||
|
||||
for i in range(7481):
|
||||
name = "0" * (6 - len(str(i))) + str(i) + '.txt'
|
||||
path_orig = os.path.join(di_orig, name)
|
||||
path = os.path.join(di, name)
|
||||
|
||||
# If the file exits, rewrite in new folder, otherwise create empty file
|
||||
read_and_rewrite(path_orig, path)
|
||||
|
||||
for method in ('monoloco_pp', 'monstereo'):
|
||||
for i in range(7481):
|
||||
name = "0" * (6 - len(str(i))) + str(i) + '.txt'
|
||||
ff = open(os.path.join(dir_out[method], name), "a+")
|
||||
ff.close()
|
||||
110
monstereo/eval/reid_baseline.py
Normal file
110
monstereo/eval/reid_baseline.py
Normal file
@ -0,0 +1,110 @@
|
||||
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
import torchvision.transforms as T
|
||||
|
||||
|
||||
from ..utils import open_image
|
||||
|
||||
|
||||
def get_reid_features(reid_net, boxes, boxes_r, path_image, path_image_r):
|
||||
|
||||
pil_image = open_image(path_image)
|
||||
pil_image_r = open_image(path_image_r)
|
||||
assert boxes and boxes_r
|
||||
cropped_img = []
|
||||
for box in boxes:
|
||||
cropped_img = cropped_img + [pil_image.crop((box[0], box[1], box[2], box[3]))]
|
||||
cropped_img_r = []
|
||||
for box in boxes_r:
|
||||
cropped_img_r = cropped_img_r + [pil_image_r.crop((box[0], box[1], box[2], box[3]))]
|
||||
|
||||
features = reid_net.forward(cropped_img)
|
||||
features_r = reid_net.forward(cropped_img_r)
|
||||
return features.cpu(), features_r.cpu()
|
||||
|
||||
|
||||
class ReID(object):
|
||||
def __init__(self, weights_path, device, num_classes=751, height=256, width=128):
|
||||
super(ReID, self).__init__()
|
||||
torch.manual_seed(1)
|
||||
self.device = device
|
||||
|
||||
if self.device.type == "cuda":
|
||||
cudnn.benchmark = True
|
||||
torch.cuda.manual_seed_all(1)
|
||||
else:
|
||||
print("Currently using CPU (GPU is highly recommended)")
|
||||
|
||||
self.transform_test = T.Compose([
|
||||
T.Resize((height, width)),
|
||||
T.ToTensor(),
|
||||
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||
])
|
||||
print("ReID Baseline:")
|
||||
print("Initializing ResNet model")
|
||||
self.model = ResNet50(num_classes=num_classes, loss={'xent'})
|
||||
self.model.to(device)
|
||||
num_param = sum(p.numel() for p in self.model.parameters()) / 1e+06
|
||||
print("Model size: {:.3f} M".format(num_param))
|
||||
|
||||
# load pretrained weights but ignore layers that don't match in size
|
||||
checkpoint = torch.load(weights_path)
|
||||
model_dict = self.model.state_dict()
|
||||
pretrain_dict = {k: v for k, v in checkpoint.items() if k in model_dict and model_dict[k].size() == v.size()}
|
||||
model_dict.update(pretrain_dict)
|
||||
self.model.load_state_dict(model_dict)
|
||||
print("Loaded pretrained weights from '{}'".format(weights_path))
|
||||
self.model.eval()
|
||||
|
||||
def forward(self, images):
|
||||
image = torch.stack([self.transform_test(image) for image in images], dim=0)
|
||||
|
||||
image = image.to(self.device)
|
||||
with torch.no_grad():
|
||||
features = self.model(image)
|
||||
return features
|
||||
|
||||
@staticmethod
|
||||
def calculate_distmat(features_1, features_2=None, use_cosine=False):
|
||||
query = features_1
|
||||
if features_2 is not None:
|
||||
gallery = features_2
|
||||
else:
|
||||
gallery = features_1
|
||||
m = query.size(0)
|
||||
n = gallery.size(0)
|
||||
if not use_cosine:
|
||||
distmat = torch.pow(query, 2).sum(dim=1, keepdim=True).expand(m, n) + \
|
||||
torch.pow(gallery, 2).sum(dim=1, keepdim=True).expand(n, m).t()
|
||||
distmat.addmm_(1, -2, query, gallery.t())
|
||||
else:
|
||||
features_norm = query/query.norm(dim=1)[:, None]
|
||||
reference_norm = gallery/gallery.norm(dim=1)[:, None]
|
||||
distmat = torch.mm(features_norm, reference_norm.transpose(0, 1))
|
||||
return distmat
|
||||
|
||||
|
||||
class ResNet50(nn.Module):
|
||||
def __init__(self, num_classes, loss):
|
||||
super(ResNet50, self).__init__()
|
||||
self.loss = loss
|
||||
resnet50 = torchvision.models.resnet50(pretrained=True)
|
||||
self.base = nn.Sequential(*list(resnet50.children())[:-2])
|
||||
self.classifier = nn.Linear(2048, num_classes)
|
||||
self.feat_dim = 2048
|
||||
|
||||
def forward(self, x):
|
||||
x = self.base(x)
|
||||
x = F.avg_pool2d(x, x.size()[2:])
|
||||
f = x.view(x.size(0), -1)
|
||||
if not self.training:
|
||||
return f
|
||||
y = self.classifier(f)
|
||||
|
||||
if self.loss == {'xent'}:
|
||||
return y
|
||||
return y, f
|
||||
103
monstereo/eval/stereo_baselines.py
Normal file
103
monstereo/eval/stereo_baselines.py
Normal file
@ -0,0 +1,103 @@
|
||||
|
||||
""""Generate stereo baselines for kitti evaluation"""
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..utils import get_keypoints, mask_joint_disparity, disparity_to_depth
|
||||
|
||||
|
||||
def baselines_association(baselines, zzs, keypoints, keypoints_right, reid_features):
|
||||
"""compute stereo depth for each of the given stereo baselines"""
|
||||
|
||||
# Initialize variables
|
||||
zzs_stereo = defaultdict()
|
||||
cnt_stereo = defaultdict(int)
|
||||
|
||||
features, features_r, keypoints, keypoints_r = factory_features(
|
||||
keypoints, keypoints_right, baselines, reid_features)
|
||||
|
||||
# count maximum possible associations
|
||||
cnt_stereo['max'] = min(keypoints.shape[0], keypoints_r.shape[0]) # pylint: disable=E1136
|
||||
|
||||
# Filter joints disparity and calculate avg disparity
|
||||
avg_disparities, disparities_x, disparities_y = mask_joint_disparity(keypoints, keypoints_r)
|
||||
|
||||
# Iterate over each left pose
|
||||
for key in baselines:
|
||||
|
||||
# Extract features of the baseline
|
||||
similarity = features_similarity(features[key], features_r[key], key, avg_disparities, zzs)
|
||||
|
||||
# Compute the association based on features minimization and calculate depth
|
||||
zzs_stereo[key] = np.empty((keypoints.shape[0]))
|
||||
|
||||
indices_stereo = [] # keep track of indices
|
||||
best = np.nanmin(similarity)
|
||||
while not np.isnan(best):
|
||||
idx, arg_best = np.unravel_index(np.nanargmin(similarity), similarity.shape) # pylint: disable=W0632
|
||||
zz_stereo, flag = disparity_to_depth(avg_disparities[idx, arg_best])
|
||||
zz_mono = zzs[idx]
|
||||
similarity[idx, :] = np.nan
|
||||
indices_stereo.append(idx)
|
||||
|
||||
# Filter stereo depth
|
||||
# if flag and verify_stereo(zz_stereo, zz_mono, disparities_x[idx, arg_best], disparities_y[idx, arg_best]):
|
||||
if flag and (1 < zz_stereo < 80): # Do not add hand-crafted verifications to stereo baselines
|
||||
zzs_stereo[key][idx] = zz_stereo
|
||||
cnt_stereo[key] += 1
|
||||
similarity[:, arg_best] = np.nan
|
||||
else:
|
||||
zzs_stereo[key][idx] = zz_mono
|
||||
|
||||
best = np.nanmin(similarity)
|
||||
indices_mono = [idx for idx, _ in enumerate(zzs) if idx not in indices_stereo]
|
||||
for idx in indices_mono:
|
||||
zzs_stereo[key][idx] = zzs[idx]
|
||||
zzs_stereo[key] = zzs_stereo[key].tolist()
|
||||
|
||||
return zzs_stereo, cnt_stereo
|
||||
|
||||
|
||||
def factory_features(keypoints, keypoints_right, baselines, reid_features):
|
||||
|
||||
features = defaultdict()
|
||||
features_r = defaultdict()
|
||||
|
||||
for key in baselines:
|
||||
if key == 'reid':
|
||||
features[key] = np.array(reid_features[0])
|
||||
features_r[key] = np.array(reid_features[1])
|
||||
else:
|
||||
features[key] = np.array(keypoints)
|
||||
features_r[key] = np.array(keypoints_right)
|
||||
|
||||
return features, features_r, np.array(keypoints), np.array(keypoints_right)
|
||||
|
||||
|
||||
def features_similarity(features, features_r, key, avg_disparities, zzs):
|
||||
|
||||
similarity = np.empty((features.shape[0], features_r.shape[0]))
|
||||
for idx, zz_mono in enumerate(zzs):
|
||||
feature = features[idx]
|
||||
|
||||
if key == 'ml_stereo':
|
||||
expected_disparity = 0.54 * 721. / zz_mono
|
||||
sim_row = np.abs(expected_disparity - avg_disparities[idx])
|
||||
|
||||
elif key == 'pose':
|
||||
# Zero-center the keypoints
|
||||
uv_center = np.array(get_keypoints(feature, mode='center').reshape(-1, 1)) # (1, 2) --> (2, 1)
|
||||
uv_centers_r = np.array(get_keypoints(features_r, mode='center').unsqueeze(-1)) # (m,2) --> (m, 2, 1)
|
||||
feature_0 = feature[:2, :] - uv_center
|
||||
feature_0 = feature_0.reshape(1, -1) # (1, 34)
|
||||
features_r_0 = features_r[:, :2, :] - uv_centers_r
|
||||
features_r_0 = features_r_0.reshape(features_r_0.shape[0], -1) # (m, 34)
|
||||
sim_row = np.linalg.norm(feature_0 - features_r_0, axis=1)
|
||||
|
||||
else:
|
||||
sim_row = np.linalg.norm(feature - features_r, axis=1)
|
||||
|
||||
similarity[idx] = sim_row
|
||||
return similarity
|
||||
4
monstereo/network/__init__.py
Normal file
4
monstereo/network/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
|
||||
from .net import Loco
|
||||
from .pifpaf import PifPaf, ImageList
|
||||
from .process import unnormalize_bi, extract_outputs, extract_labels, extract_labels_aux
|
||||
434
monstereo/network/architectures.py
Normal file
434
monstereo/network/architectures.py
Normal file
@ -0,0 +1,434 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class SimpleModel(nn.Module):
|
||||
|
||||
def __init__(self, input_size, output_size=2, linear_size=512, p_dropout=0.2, num_stage=3, device='cuda'):
|
||||
super(SimpleModel, self).__init__()
|
||||
|
||||
self.num_stage = num_stage
|
||||
self.stereo_size = input_size
|
||||
self.mono_size = int(input_size / 2)
|
||||
self.output_size = output_size - 1
|
||||
self.linear_size = linear_size
|
||||
self.p_dropout = p_dropout
|
||||
self.num_stage = num_stage
|
||||
self.linear_stages = []
|
||||
self.device = device
|
||||
|
||||
# Initialize weights
|
||||
|
||||
# Preprocessing
|
||||
self.w1 = nn.Linear(self.stereo_size, self.linear_size)
|
||||
self.batch_norm1 = nn.BatchNorm1d(self.linear_size)
|
||||
|
||||
# Internal loop
|
||||
for _ in range(num_stage):
|
||||
self.linear_stages.append(MyLinearSimple(self.linear_size, self.p_dropout))
|
||||
self.linear_stages = nn.ModuleList(self.linear_stages)
|
||||
|
||||
# Post processing
|
||||
self.w2 = nn.Linear(self.linear_size, self.linear_size)
|
||||
self.w3 = nn.Linear(self.linear_size, self.linear_size)
|
||||
self.batch_norm3 = nn.BatchNorm1d(self.linear_size)
|
||||
|
||||
# ------------------------Other----------------------------------------------
|
||||
# Auxiliary
|
||||
self.w_aux = nn.Linear(self.linear_size, 1)
|
||||
|
||||
# Final
|
||||
self.w_fin = nn.Linear(self.linear_size, self.output_size)
|
||||
|
||||
# NO-weight operations
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.dropout = nn.Dropout(self.p_dropout)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
y = self.w1(x)
|
||||
y = self.batch_norm1(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
|
||||
for i in range(self.num_stage):
|
||||
y = self.linear_stages[i](y)
|
||||
|
||||
# Auxiliary task
|
||||
y = self.w2(y)
|
||||
aux = self.w_aux(y)
|
||||
|
||||
# Final layers
|
||||
y = self.w3(y)
|
||||
y = self.batch_norm3(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
y = self.w_fin(y)
|
||||
|
||||
# Cat with auxiliary task
|
||||
y = torch.cat((y, aux), dim=1)
|
||||
return y
|
||||
|
||||
|
||||
class MyLinearSimple(nn.Module):
|
||||
def __init__(self, linear_size, p_dropout=0.5):
|
||||
super(MyLinearSimple, self).__init__()
|
||||
self.l_size = linear_size
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.dropout = nn.Dropout(p_dropout)
|
||||
|
||||
self.w1 = nn.Linear(self.l_size, self.l_size)
|
||||
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
|
||||
|
||||
self.w2 = nn.Linear(self.l_size, self.l_size)
|
||||
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
y = self.w1(x)
|
||||
y = self.batch_norm1(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
|
||||
y = self.w2(y)
|
||||
y = self.batch_norm2(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
|
||||
out = x + y
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class DecisionModel(nn.Module):
|
||||
|
||||
def __init__(self, input_size, output_size=2, linear_size=512, p_dropout=0.2, num_stage=3, device='cuda:1'):
|
||||
super(DecisionModel, self).__init__()
|
||||
|
||||
self.num_stage = num_stage
|
||||
self.stereo_size = input_size
|
||||
self.mono_size = int(input_size / 2)
|
||||
self.output_size = output_size - 1
|
||||
self.linear_size = linear_size
|
||||
self.p_dropout = p_dropout
|
||||
self.num_stage = num_stage
|
||||
self.linear_stages_mono, self.linear_stages_stereo, self.linear_stages_dec = [], [], []
|
||||
self.device = device
|
||||
|
||||
# Initialize weights
|
||||
|
||||
# ------------------------Stereo----------------------------------------------
|
||||
# Preprocessing
|
||||
self.w1_stereo = nn.Linear(self.stereo_size, self.linear_size)
|
||||
self.batch_norm_stereo = nn.BatchNorm1d(self.linear_size)
|
||||
|
||||
# Internal loop
|
||||
for _ in range(num_stage):
|
||||
self.linear_stages_stereo.append(MyLinear_stereo(self.linear_size, self.p_dropout))
|
||||
self.linear_stages_stereo = nn.ModuleList(self.linear_stages_stereo)
|
||||
|
||||
# Post processing
|
||||
self.w2_stereo = nn.Linear(self.linear_size, self.output_size)
|
||||
|
||||
# ------------------------Mono----------------------------------------------
|
||||
# Preprocessing
|
||||
self.w1_mono = nn.Linear(self.mono_size, self.linear_size)
|
||||
self.batch_norm_mono = nn.BatchNorm1d(self.linear_size)
|
||||
|
||||
# Internal loop
|
||||
for _ in range(num_stage):
|
||||
self.linear_stages_mono.append(MyLinear_stereo(self.linear_size, self.p_dropout))
|
||||
self.linear_stages_mono = nn.ModuleList(self.linear_stages_mono)
|
||||
|
||||
# Post processing
|
||||
self.w2_mono = nn.Linear(self.linear_size, self.output_size)
|
||||
|
||||
# ------------------------Decision----------------------------------------------
|
||||
# Preprocessing
|
||||
self.w1_dec = nn.Linear(self.stereo_size, self.linear_size)
|
||||
self.batch_norm_dec = nn.BatchNorm1d(self.linear_size)
|
||||
#
|
||||
# Internal loop
|
||||
for _ in range(num_stage):
|
||||
self.linear_stages_dec.append(MyLinear(self.linear_size, self.p_dropout))
|
||||
self.linear_stages_dec = nn.ModuleList(self.linear_stages_dec)
|
||||
|
||||
# Post processing
|
||||
self.w2_dec = nn.Linear(self.linear_size, 1)
|
||||
|
||||
# ------------------------Other----------------------------------------------
|
||||
|
||||
# NO-weight operations
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.dropout = nn.Dropout(self.p_dropout)
|
||||
|
||||
def forward(self, x, label=None):
|
||||
|
||||
# Mono
|
||||
y_m = self.w1_mono(x[:, 0:34])
|
||||
y_m = self.batch_norm_mono(y_m)
|
||||
y_m = self.relu(y_m)
|
||||
y_m = self.dropout(y_m)
|
||||
|
||||
for i in range(self.num_stage):
|
||||
y_m = self.linear_stages_mono[i](y_m)
|
||||
y_m = self.w2_mono(y_m)
|
||||
|
||||
# Stereo
|
||||
y_s = self.w1_stereo(x)
|
||||
y_s = self.batch_norm_stereo(y_s)
|
||||
y_s = self.relu(y_s)
|
||||
y_s = self.dropout(y_s)
|
||||
|
||||
for i in range(self.num_stage):
|
||||
y_s = self.linear_stages_stereo[i](y_s)
|
||||
y_s = self.w2_stereo(y_s)
|
||||
|
||||
# Decision
|
||||
y_d = self.w1_dec(x)
|
||||
y_d = self.batch_norm_dec(y_d)
|
||||
y_d = self.relu(y_d)
|
||||
y_d = self.dropout(y_d)
|
||||
|
||||
for i in range(self.num_stage):
|
||||
y_d = self.linear_stages_dec[i](y_d)
|
||||
aux = self.w2_dec(y_d)
|
||||
|
||||
# Combine
|
||||
if label is not None:
|
||||
gate = label
|
||||
else:
|
||||
gate = torch.where(torch.sigmoid(aux) > 0.3,
|
||||
torch.tensor([1.]).to(self.device), torch.tensor([0.]).to(self.device))
|
||||
y = gate * y_s + (1-gate) * y_m
|
||||
|
||||
# Cat with auxiliary task
|
||||
y = torch.cat((y, aux), dim=1)
|
||||
return y
|
||||
|
||||
|
||||
class AttentionModel(nn.Module):
|
||||
|
||||
def __init__(self, input_size, output_size=2, linear_size=512, p_dropout=0.2, num_stage=3, device='cuda'):
|
||||
super(AttentionModel, self).__init__()
|
||||
|
||||
self.num_stage = num_stage
|
||||
self.stereo_size = input_size
|
||||
self.mono_size = int(input_size / 2)
|
||||
self.output_size = output_size - 1
|
||||
self.linear_size = linear_size
|
||||
self.p_dropout = p_dropout
|
||||
self.num_stage = num_stage
|
||||
self.linear_stages_mono, self.linear_stages_stereo, self.linear_stages_comb = [], [], []
|
||||
self.device = device
|
||||
|
||||
# Initialize weights
|
||||
# ------------------------Stereo----------------------------------------------
|
||||
# Preprocessing
|
||||
self.w1_stereo = nn.Linear(self.stereo_size, self.linear_size)
|
||||
self.batch_norm_stereo = nn.BatchNorm1d(self.linear_size)
|
||||
|
||||
# Internal loop
|
||||
for _ in range(num_stage):
|
||||
self.linear_stages_stereo.append(MyLinear_stereo(self.linear_size, self.p_dropout))
|
||||
self.linear_stages_stereo = nn.ModuleList(self.linear_stages_stereo)
|
||||
|
||||
# Post processing
|
||||
self.w2_stereo = nn.Linear(self.linear_size, self.linear_size)
|
||||
|
||||
# ------------------------Mono----------------------------------------------
|
||||
# Preprocessing
|
||||
self.w1_mono = nn.Linear(self.mono_size, self.linear_size)
|
||||
self.batch_norm_mono = nn.BatchNorm1d(self.linear_size)
|
||||
|
||||
# Internal loop
|
||||
for _ in range(num_stage):
|
||||
self.linear_stages_mono.append(MyLinear_stereo(self.linear_size, self.p_dropout))
|
||||
self.linear_stages_mono = nn.ModuleList(self.linear_stages_mono)
|
||||
|
||||
# Post processing
|
||||
self.w2_mono = nn.Linear(self.linear_size, self.linear_size)
|
||||
|
||||
# ------------------------Combined----------------------------------------------
|
||||
# Preprocessing
|
||||
self.w1_comb = nn.Linear(self.linear_size, self.linear_size)
|
||||
self.batch_norm_comb = nn.BatchNorm1d(self.linear_size)
|
||||
#
|
||||
# Internal loop
|
||||
for _ in range(num_stage):
|
||||
self.linear_stages_comb.append(MyLinear(self.linear_size, self.p_dropout))
|
||||
self.linear_stages_comb = nn.ModuleList(self.linear_stages_comb)
|
||||
|
||||
# Post processing
|
||||
self.w2_comb = nn.Linear(self.linear_size, self.linear_size)
|
||||
|
||||
# ------------------------Other----------------------------------------------
|
||||
# Auxiliary
|
||||
self.w_aux = nn.Linear(self.linear_size, 1)
|
||||
|
||||
# Final
|
||||
self.w_fin = nn.Linear(self.linear_size, self.output_size)
|
||||
|
||||
# NO-weight operations
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.dropout = nn.Dropout(self.p_dropout)
|
||||
|
||||
def forward(self, x, label=None):
|
||||
|
||||
|
||||
# Mono
|
||||
y_m = self.w1_mono(x[:, 0:34])
|
||||
y_m = self.batch_norm_mono(y_m)
|
||||
y_m = self.relu(y_m)
|
||||
y_m = self.dropout(y_m)
|
||||
|
||||
for i in range(self.num_stage):
|
||||
y_m = self.linear_stages_mono[i](y_m)
|
||||
y_m = self.w2_mono(y_m)
|
||||
|
||||
# Stereo
|
||||
y_s = self.w1_stereo(x)
|
||||
y_s = self.batch_norm_stereo(y_s)
|
||||
y_s = self.relu(y_s)
|
||||
y_s = self.dropout(y_s)
|
||||
|
||||
for i in range(self.num_stage):
|
||||
y_s = self.linear_stages_stereo[i](y_s)
|
||||
y_s = self.w2_stereo(y_s)
|
||||
|
||||
# Auxiliary task
|
||||
aux = self.w_aux(y_s)
|
||||
|
||||
# Combined
|
||||
if label is not None:
|
||||
gate = label
|
||||
else:
|
||||
gate = torch.where(torch.sigmoid(aux) > 0.3,
|
||||
torch.tensor([1.]).to(self.device), torch.tensor([0.]).to(self.device))
|
||||
y_c = gate * y_s + (1-gate) * y_m
|
||||
y_c = self.w1_comb(y_c)
|
||||
y_c = self.batch_norm_comb(y_c)
|
||||
y_c = self.relu(y_c)
|
||||
y_c = self.dropout(y_c)
|
||||
y_c = self.w_fin(y_c)
|
||||
|
||||
# Cat with auxiliary task
|
||||
y = torch.cat((y_c, aux), dim=1)
|
||||
return y
|
||||
|
||||
|
||||
class MyLinear_stereo(nn.Module):
|
||||
def __init__(self, linear_size, p_dropout=0.5):
|
||||
super(MyLinear_stereo, self).__init__()
|
||||
self.l_size = linear_size
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.dropout = nn.Dropout(p_dropout)
|
||||
|
||||
# self.w0_a = nn.Linear(self.l_size, self.l_size)
|
||||
# self.batch_norm0_a = nn.BatchNorm1d(self.l_size)
|
||||
# self.w0_b = nn.Linear(self.l_size, self.l_size)
|
||||
# self.batch_norm0_b = nn.BatchNorm1d(self.l_size)
|
||||
|
||||
self.w1 = nn.Linear(self.l_size, self.l_size)
|
||||
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
|
||||
|
||||
self.w2 = nn.Linear(self.l_size, self.l_size)
|
||||
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
|
||||
|
||||
def forward(self, x):
|
||||
#
|
||||
# x = self.w0_a(x)
|
||||
# x = self.batch_norm0_a(x)
|
||||
# x = self.w0_b(x)
|
||||
# x = self.batch_norm0_b(x)
|
||||
|
||||
y = self.w1(x)
|
||||
y = self.batch_norm1(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
|
||||
y = self.w2(y)
|
||||
y = self.batch_norm2(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
|
||||
out = x + y
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class MonolocoModel(nn.Module):
|
||||
"""
|
||||
Architecture inspired by https://github.com/una-dinosauria/3d-pose-baseline
|
||||
Pytorch implementation from: https://github.com/weigq/3d_pose_baseline_pytorch
|
||||
"""
|
||||
|
||||
def __init__(self, input_size, output_size=2, linear_size=256, p_dropout=0.2, num_stage=3):
|
||||
super(MonolocoModel, self).__init__()
|
||||
|
||||
self.input_size = input_size
|
||||
self.output_size = output_size
|
||||
self.linear_size = linear_size
|
||||
self.p_dropout = p_dropout
|
||||
self.num_stage = num_stage
|
||||
|
||||
# process input to linear size
|
||||
self.w1 = nn.Linear(self.input_size, self.linear_size)
|
||||
self.batch_norm1 = nn.BatchNorm1d(self.linear_size)
|
||||
|
||||
self.linear_stages = []
|
||||
for _ in range(num_stage):
|
||||
self.linear_stages.append(MyLinear(self.linear_size, self.p_dropout))
|
||||
self.linear_stages = nn.ModuleList(self.linear_stages)
|
||||
|
||||
# post processing
|
||||
self.w2 = nn.Linear(self.linear_size, self.output_size)
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.dropout = nn.Dropout(self.p_dropout)
|
||||
|
||||
def forward(self, x):
|
||||
# pre-processing
|
||||
y = self.w1(x)
|
||||
y = self.batch_norm1(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
# linear layers
|
||||
for i in range(self.num_stage):
|
||||
y = self.linear_stages[i](y)
|
||||
y = self.w2(y)
|
||||
return y
|
||||
|
||||
|
||||
class MyLinear(nn.Module):
|
||||
def __init__(self, linear_size, p_dropout=0.5):
|
||||
super(MyLinear, self).__init__()
|
||||
self.l_size = linear_size
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.dropout = nn.Dropout(p_dropout)
|
||||
|
||||
self.w1 = nn.Linear(self.l_size, self.l_size)
|
||||
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
|
||||
|
||||
self.w2 = nn.Linear(self.l_size, self.l_size)
|
||||
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
y = self.w1(x)
|
||||
y = self.batch_norm1(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
|
||||
y = self.w2(y)
|
||||
y = self.batch_norm2(y)
|
||||
y = self.relu(y)
|
||||
y = self.dropout(y)
|
||||
|
||||
out = x + y
|
||||
|
||||
return out
|
||||
213
monstereo/network/geom_baseline.py
Normal file
213
monstereo/network/geom_baseline.py
Normal file
@ -0,0 +1,213 @@
|
||||
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from monstereo.utils import pixel_to_camera, get_keypoints
|
||||
|
||||
AVERAGE_Y = 0.48
|
||||
CLUSTERS = ['10', '20', '30', 'all']
|
||||
|
||||
|
||||
def geometric_coordinates(keypoints, kk, average_y=0.48):
|
||||
""" Evaluate geometric depths for a set of keypoints"""
|
||||
|
||||
zzs_geom = []
|
||||
uv_shoulders = get_keypoints(keypoints, mode='shoulder')
|
||||
uv_hips = get_keypoints(keypoints, mode='hip')
|
||||
uv_centers = get_keypoints(keypoints, mode='center')
|
||||
|
||||
xy_shoulders = pixel_to_camera(uv_shoulders, kk, 1)
|
||||
xy_hips = pixel_to_camera(uv_hips, kk, 1)
|
||||
xy_centers = pixel_to_camera(uv_centers, kk, 1)
|
||||
|
||||
for idx, xy_shoulder in enumerate(xy_shoulders):
|
||||
zz = compute_depth(xy_shoulders[idx], xy_hips[idx], average_y)
|
||||
zzs_geom.append(zz)
|
||||
return zzs_geom, xy_centers
|
||||
|
||||
|
||||
def geometric_baseline(joints):
|
||||
"""
|
||||
List of json files --> 2 lists with mean and std for each segment and the total count of instances
|
||||
|
||||
For each annotation:
|
||||
1. From gt boxes calculate the height (deltaY) for the segments head, shoulder, hip, ankle
|
||||
2. From mask boxes calculate distance of people using average height of people and real pixel height
|
||||
|
||||
For left-right ambiguities we chose always the average of the joints
|
||||
|
||||
The joints are mapped from 0 to 16 in the following order:
|
||||
['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow',
|
||||
'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle',
|
||||
'right_ankle']
|
||||
|
||||
"""
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
cnt_tot = 0
|
||||
dic_dist = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
# Access the joints file
|
||||
with open(joints, 'r') as ff:
|
||||
dic_joints = json.load(ff)
|
||||
|
||||
# Calculate distances for all the instances in the joints dictionary
|
||||
for phase in ['train', 'val']:
|
||||
cnt = update_distances(dic_joints[phase], dic_dist, phase, AVERAGE_Y)
|
||||
cnt_tot += cnt
|
||||
|
||||
# Calculate mean and std of each segment
|
||||
dic_h_means = calculate_heights(dic_dist['heights'], mode='mean')
|
||||
dic_h_stds = calculate_heights(dic_dist['heights'], mode='std')
|
||||
errors = calculate_error(dic_dist['error'])
|
||||
|
||||
# Show results
|
||||
logger.info("Computed distance of {} annotations".format(cnt_tot))
|
||||
for key in dic_h_means:
|
||||
logger.info("Average height of segment {} is {:.2f} with a std of {:.2f}".
|
||||
format(key, dic_h_means[key], dic_h_stds[key]))
|
||||
for clst in CLUSTERS:
|
||||
logger.info("Average error over the val set for clst {}: {:.2f}".format(clst, errors[clst]))
|
||||
logger.info("Joints used: {}".format(joints))
|
||||
|
||||
|
||||
def update_distances(dic_fin, dic_dist, phase, average_y):
|
||||
|
||||
# Loop over each annotation in the json file corresponding to the image
|
||||
cnt = 0
|
||||
for idx, kps in enumerate(dic_fin['kps']):
|
||||
|
||||
# Extract pixel coordinates of head, shoulder, hip, ankle and and save them
|
||||
dic_uv = {mode: get_keypoints(kps, mode) for mode in ['head', 'shoulder', 'hip', 'ankle']}
|
||||
|
||||
# Convert segments from pixel coordinate to camera coordinate
|
||||
kk = dic_fin['K'][idx]
|
||||
z_met = dic_fin['boxes_3d'][idx][2]
|
||||
|
||||
# Create a dict with all annotations in meters
|
||||
dic_xyz = {key: pixel_to_camera(dic_uv[key], kk, z_met) for key in dic_uv}
|
||||
dic_xyz_norm = {key: pixel_to_camera(dic_uv[key], kk, 1) for key in dic_uv}
|
||||
|
||||
# Compute real height
|
||||
dy_met = abs(float((dic_xyz['hip'][0][1] - dic_xyz['shoulder'][0][1])))
|
||||
|
||||
# Estimate distance for a single annotation
|
||||
z_met_real = compute_depth(dic_xyz_norm['shoulder'][0], dic_xyz_norm['hip'][0], average_y,
|
||||
mode='real', dy_met=dy_met)
|
||||
z_met_approx = compute_depth(dic_xyz_norm['shoulder'][0], dic_xyz_norm['hip'][0], average_y, mode='average')
|
||||
|
||||
# Compute distance with respect to the center of the 3D bounding box
|
||||
d_real = math.sqrt(z_met_real ** 2 + dic_fin['boxes_3d'][idx][0] ** 2 + dic_fin['boxes_3d'][idx][1] ** 2)
|
||||
d_approx = math.sqrt(z_met_approx ** 2 +
|
||||
dic_fin['boxes_3d'][idx][0] ** 2 + dic_fin['boxes_3d'][idx][1] ** 2)
|
||||
|
||||
# Update the dictionary with distance and heights metrics
|
||||
dic_dist = update_dic_dist(dic_dist, dic_xyz, d_real, d_approx, phase)
|
||||
cnt += 1
|
||||
|
||||
return cnt
|
||||
|
||||
|
||||
def compute_depth(xyz_norm_1, xyz_norm_2, average_y, mode='average', dy_met=0):
|
||||
"""
|
||||
Compute depth Z of a mask annotation (solving a linear system) for 2 possible cases:
|
||||
1. knowing specific height of the annotation (head-ankle) dy_met
|
||||
2. using mean height of people (average_y)
|
||||
"""
|
||||
assert mode in ('average', 'real')
|
||||
|
||||
x1 = float(xyz_norm_1[0])
|
||||
y1 = float(xyz_norm_1[1])
|
||||
x2 = float(xyz_norm_2[0])
|
||||
y2 = float(xyz_norm_2[1])
|
||||
xx = (x1 + x2) / 2
|
||||
|
||||
# Choose if solving for provided height or average one.
|
||||
if mode == 'average':
|
||||
cc = - average_y # Y axis goes down
|
||||
else:
|
||||
cc = -dy_met
|
||||
|
||||
# Solving the linear system Ax = b
|
||||
matrix = np.array([[y1, 0, -xx],
|
||||
[0, -y1, 1],
|
||||
[y2, 0, -xx],
|
||||
[0, -y2, 1]])
|
||||
|
||||
bb = np.array([cc * xx, -cc, 0, 0]).reshape(4, 1)
|
||||
xx = np.linalg.lstsq(matrix, bb, rcond=None)
|
||||
z_met = abs(np.float(xx[0][1])) # Abs take into account specularity behind the observer
|
||||
|
||||
return z_met
|
||||
|
||||
|
||||
def update_dic_dist(dic_dist, dic_xyz, d_real, d_approx, phase):
|
||||
""" For every annotation in a single image, update the final dictionary"""
|
||||
|
||||
# Update the dict with heights metric
|
||||
if phase == 'train':
|
||||
dic_dist['heights']['head'].append(float(dic_xyz['head'][0][1]))
|
||||
dic_dist['heights']['shoulder'].append(float(dic_xyz['shoulder'][0][1]))
|
||||
dic_dist['heights']['hip'].append(float(dic_xyz['hip'][0][1]))
|
||||
dic_dist['heights']['ankle'].append(float(dic_xyz['ankle'][0][1]))
|
||||
|
||||
# Update the dict with distance metrics for the test phase
|
||||
if phase == 'val':
|
||||
error = abs(d_real - d_approx)
|
||||
|
||||
if d_real <= 10:
|
||||
dic_dist['error']['10'].append(error)
|
||||
elif d_real <= 20:
|
||||
dic_dist['error']['20'].append(error)
|
||||
elif d_real <= 30:
|
||||
dic_dist['error']['30'].append(error)
|
||||
else:
|
||||
dic_dist['error']['>30'].append(error)
|
||||
|
||||
dic_dist['error']['all'].append(error)
|
||||
|
||||
return dic_dist
|
||||
|
||||
|
||||
def calculate_heights(heights, mode):
|
||||
"""
|
||||
Compute statistics of heights based on the distance
|
||||
"""
|
||||
|
||||
assert mode in ('mean', 'std', 'max')
|
||||
heights_fin = {}
|
||||
|
||||
head_shoulder = np.array(heights['shoulder']) - np.array(heights['head'])
|
||||
shoulder_hip = np.array(heights['hip']) - np.array(heights['shoulder'])
|
||||
hip_ankle = np.array(heights['ankle']) - np.array(heights['hip'])
|
||||
|
||||
if mode == 'mean':
|
||||
heights_fin['head_shoulder'] = np.float(np.mean(head_shoulder)) * 100
|
||||
heights_fin['shoulder_hip'] = np.float(np.mean(shoulder_hip)) * 100
|
||||
heights_fin['hip_ankle'] = np.float(np.mean(hip_ankle)) * 100
|
||||
|
||||
elif mode == 'std':
|
||||
heights_fin['head_shoulder'] = np.float(np.std(head_shoulder)) * 100
|
||||
heights_fin['shoulder_hip'] = np.float(np.std(shoulder_hip)) * 100
|
||||
heights_fin['hip_ankle'] = np.float(np.std(hip_ankle)) * 100
|
||||
|
||||
elif mode == 'max':
|
||||
heights_fin['head_shoulder'] = np.float(np.max(head_shoulder)) * 100
|
||||
heights_fin['shoulder_hip'] = np.float(np.max(shoulder_hip)) * 100
|
||||
heights_fin['hip_ankle'] = np.float(np.max(hip_ankle)) * 100
|
||||
|
||||
return heights_fin
|
||||
|
||||
|
||||
def calculate_error(dic_errors):
|
||||
"""
|
||||
Compute statistics of distances based on the distance
|
||||
"""
|
||||
errors = {}
|
||||
for clst in dic_errors:
|
||||
errors[clst] = np.float(np.mean(np.array(dic_errors[clst])))
|
||||
return errors
|
||||
253
monstereo/network/net.py
Normal file
253
monstereo/network/net.py
Normal file
@ -0,0 +1,253 @@
|
||||
# pylint: disable=too-many-statements
|
||||
|
||||
"""
|
||||
Loco super class for MonStereo, MonoLoco, MonoLoco++ nets.
|
||||
From 2D joints to real-world distances with monocular &/or stereo cameras
|
||||
"""
|
||||
|
||||
import math
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
|
||||
import torch
|
||||
|
||||
from ..utils import get_iou_matches, reorder_matches, get_keypoints, pixel_to_camera, xyz_from_distance
|
||||
from .process import preprocess_monstereo, preprocess_monoloco, extract_outputs, extract_outputs_mono,\
|
||||
filter_outputs, cluster_outputs, unnormalize_bi
|
||||
from .architectures import MonolocoModel, SimpleModel
|
||||
|
||||
|
||||
class Loco:
|
||||
"""Class for both MonoLoco and MonStereo"""
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
LINEAR_SIZE_MONO = 256
|
||||
N_SAMPLES = 100
|
||||
|
||||
def __init__(self, model, net='monstereo', device=None, n_dropout=0, p_dropout=0.2, linear_size=1024):
|
||||
self.net = net
|
||||
assert self.net in ('monstereo', 'monoloco', 'monoloco_p', 'monoloco_pp')
|
||||
if self.net == 'monstereo':
|
||||
input_size = 68
|
||||
output_size = 10
|
||||
elif self.net == 'monoloco_p':
|
||||
input_size = 34
|
||||
output_size = 9
|
||||
linear_size = 256
|
||||
elif self.net == 'monoloco_pp':
|
||||
input_size = 34
|
||||
output_size = 9
|
||||
else:
|
||||
input_size = 34
|
||||
output_size = 2
|
||||
|
||||
if not device:
|
||||
self.device = torch.device('cpu')
|
||||
else:
|
||||
self.device = device
|
||||
self.n_dropout = n_dropout
|
||||
self.epistemic = bool(self.n_dropout > 0)
|
||||
|
||||
# if the path is provided load the model parameters
|
||||
if isinstance(model, str):
|
||||
model_path = model
|
||||
if net in ('monoloco', 'monoloco_p'):
|
||||
self.model = MonolocoModel(p_dropout=p_dropout, input_size=input_size, linear_size=linear_size,
|
||||
output_size=output_size)
|
||||
else:
|
||||
self.model = SimpleModel(p_dropout=p_dropout, input_size=input_size, output_size=output_size,
|
||||
linear_size=linear_size, device=self.device)
|
||||
|
||||
self.model.load_state_dict(torch.load(model_path, map_location=lambda storage, loc: storage))
|
||||
else:
|
||||
self.model = model
|
||||
self.model.eval() # Default is train
|
||||
self.model.to(self.device)
|
||||
|
||||
def forward(self, keypoints, kk, keypoints_r=None):
|
||||
"""
|
||||
Forward pass of MonSter or monoloco network
|
||||
It includes preprocessing and postprocessing of data
|
||||
"""
|
||||
if not keypoints:
|
||||
return None
|
||||
|
||||
with torch.no_grad():
|
||||
keypoints = torch.tensor(keypoints).to(self.device)
|
||||
kk = torch.tensor(kk).to(self.device)
|
||||
|
||||
if self.net == 'monoloco':
|
||||
inputs = preprocess_monoloco(keypoints, kk, zero_center=True)
|
||||
outputs = self.model(inputs)
|
||||
bi = unnormalize_bi(outputs)
|
||||
dic_out = {'d': outputs[:, 0:1], 'bi': bi}
|
||||
dic_out = {key: el.detach().cpu() for key, el in dic_out.items()}
|
||||
|
||||
elif self.net == 'monoloco_p':
|
||||
inputs = preprocess_monoloco(keypoints, kk)
|
||||
outputs = self.model(inputs)
|
||||
dic_out = extract_outputs_mono(outputs)
|
||||
|
||||
elif self.net == 'monoloco_pp':
|
||||
inputs = preprocess_monoloco(keypoints, kk)
|
||||
outputs = self.model(inputs)
|
||||
dic_out = extract_outputs(outputs)
|
||||
|
||||
else:
|
||||
if keypoints_r:
|
||||
keypoints_r = torch.tensor(keypoints_r).to(self.device)
|
||||
else:
|
||||
keypoints_r = keypoints[0:1, :].clone()
|
||||
inputs, _ = preprocess_monstereo(keypoints, keypoints_r, kk)
|
||||
outputs = self.model(inputs)
|
||||
|
||||
outputs = cluster_outputs(outputs, keypoints_r.shape[0])
|
||||
outputs_fin, mask = filter_outputs(outputs)
|
||||
dic_out = extract_outputs(outputs_fin)
|
||||
|
||||
# For Median baseline
|
||||
# dic_out = median_disparity(dic_out, keypoints, keypoints_r, mask)
|
||||
|
||||
if self.n_dropout > 0 and self.net != 'monstereo':
|
||||
varss = self.epistemic_uncertainty(inputs)
|
||||
dic_out['epi'] = varss
|
||||
else:
|
||||
dic_out['epi'] = [0.] * outputs.shape[0]
|
||||
# Add in the dictionary
|
||||
|
||||
return dic_out
|
||||
|
||||
def epistemic_uncertainty(self, inputs):
|
||||
"""
|
||||
Apply dropout at test time to obtain combined aleatoric + epistemic uncertainty
|
||||
"""
|
||||
assert self.net in ('monoloco', 'monoloco_p', 'monoloco_pp'), "Not supported for MonStereo"
|
||||
from .process import laplace_sampling
|
||||
|
||||
self.model.dropout.training = True # Manually reactivate dropout in eval
|
||||
total_outputs = torch.empty((0, inputs.size()[0])).to(self.device)
|
||||
|
||||
for _ in range(self.n_dropout):
|
||||
outputs = self.model(inputs)
|
||||
|
||||
# Extract localization output
|
||||
if self.net == 'monoloco':
|
||||
db = outputs[:, 0:2]
|
||||
else:
|
||||
db = outputs[:, 2:4]
|
||||
|
||||
# Unnormalize b and concatenate
|
||||
bi = unnormalize_bi(db)
|
||||
outputs = torch.cat((db[:, 0:1], bi), dim=1)
|
||||
|
||||
samples = laplace_sampling(outputs, self.N_SAMPLES)
|
||||
total_outputs = torch.cat((total_outputs, samples), 0)
|
||||
varss = total_outputs.std(0)
|
||||
self.model.dropout.training = False
|
||||
return varss
|
||||
|
||||
@staticmethod
|
||||
def post_process(dic_in, boxes, keypoints, kk, dic_gt=None, iou_min=0.3, reorder=True, verbose=False):
|
||||
"""Post process monoloco to output final dictionary with all information for visualizations"""
|
||||
|
||||
dic_out = defaultdict(list)
|
||||
if dic_in is None:
|
||||
return dic_out
|
||||
|
||||
if dic_gt:
|
||||
boxes_gt = dic_gt['boxes']
|
||||
dds_gt = [el[3] for el in dic_gt['ys']]
|
||||
matches = get_iou_matches(boxes, boxes_gt, iou_min=iou_min)
|
||||
dic_out['gt'] = [True]
|
||||
if verbose:
|
||||
print("found {} matches with ground-truth".format(len(matches)))
|
||||
|
||||
# Keep track of instances non-matched
|
||||
idxs_matches = (el[0] for el in matches)
|
||||
not_matches = [idx for idx, _ in enumerate(boxes) if idx not in idxs_matches]
|
||||
|
||||
else:
|
||||
matches = []
|
||||
not_matches = list(range(len(boxes)))
|
||||
if verbose:
|
||||
print("NO ground-truth associated")
|
||||
|
||||
if reorder:
|
||||
matches = reorder_matches(matches, boxes, mode='left_right')
|
||||
|
||||
all_idxs = [idx for idx, _ in matches] + not_matches
|
||||
dic_out['gt'] = [True]*len(matches) + [False]*len(not_matches)
|
||||
|
||||
uv_shoulders = get_keypoints(keypoints, mode='shoulder')
|
||||
uv_heads = get_keypoints(keypoints, mode='head')
|
||||
uv_centers = get_keypoints(keypoints, mode='center')
|
||||
xy_centers = pixel_to_camera(uv_centers, kk, 1)
|
||||
|
||||
# Add all the predicted annotations, starting with the ones that match a ground-truth
|
||||
for idx in all_idxs:
|
||||
kps = keypoints[idx]
|
||||
box = boxes[idx]
|
||||
dd_pred = float(dic_in['d'][idx])
|
||||
bi = float(dic_in['bi'][idx])
|
||||
var_y = float(dic_in['epi'][idx])
|
||||
uu_s, vv_s = uv_shoulders.tolist()[idx][0:2]
|
||||
uu_c, vv_c = uv_centers.tolist()[idx][0:2]
|
||||
uu_h, vv_h = uv_heads.tolist()[idx][0:2]
|
||||
uv_shoulder = [round(uu_s), round(vv_s)]
|
||||
uv_center = [round(uu_c), round(vv_c)]
|
||||
uv_head = [round(uu_h), round(vv_h)]
|
||||
xyz_pred = xyz_from_distance(dd_pred, xy_centers[idx])[0]
|
||||
distance = math.sqrt(float(xyz_pred[0])**2 + float(xyz_pred[1])**2 + float(xyz_pred[2])**2)
|
||||
conf = 0.035 * (box[-1]) / (bi / distance)
|
||||
|
||||
dic_out['boxes'].append(box)
|
||||
dic_out['confs'].append(conf)
|
||||
dic_out['dds_pred'].append(dd_pred)
|
||||
dic_out['stds_ale'].append(bi)
|
||||
dic_out['stds_epi'].append(var_y)
|
||||
|
||||
dic_out['xyz_pred'].append(xyz_pred.squeeze().tolist())
|
||||
dic_out['uv_kps'].append(kps)
|
||||
dic_out['uv_centers'].append(uv_center)
|
||||
dic_out['uv_shoulders'].append(uv_shoulder)
|
||||
dic_out['uv_heads'].append(uv_head)
|
||||
|
||||
# Only for MonStereo
|
||||
try:
|
||||
angle = float(dic_in['yaw'][0][idx]) # Predicted angle
|
||||
dic_out['angles'].append(angle)
|
||||
dic_out['aux'].append(float(dic_in['aux'][idx]))
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
for idx, idx_gt in matches:
|
||||
dd_real = dds_gt[idx_gt]
|
||||
xyz_real = xyz_from_distance(dd_real, xy_centers[idx])
|
||||
dic_out['dds_real'].append(dd_real)
|
||||
dic_out['boxes_gt'].append(boxes_gt[idx_gt])
|
||||
dic_out['xyz_real'].append(xyz_real.squeeze().tolist())
|
||||
return dic_out
|
||||
|
||||
|
||||
def median_disparity(dic_out, keypoints, keypoints_r, mask):
|
||||
"""
|
||||
Ablation study: whenever a matching is found, compute depth by median disparity instead of using MonSter
|
||||
Filters are applied to masks nan joints and remove outlier disparities with iqr
|
||||
The mask input is used to filter the all-vs-all approach
|
||||
"""
|
||||
import numpy as np
|
||||
from ..utils import mask_joint_disparity
|
||||
|
||||
keypoints = keypoints.cpu().numpy()
|
||||
keypoints_r = keypoints_r.cpu().numpy()
|
||||
mask = mask.cpu().numpy()
|
||||
avg_disparities, _, _ = mask_joint_disparity(keypoints, keypoints_r)
|
||||
BF = 0.54 * 721
|
||||
for idx, aux in enumerate(dic_out['aux']):
|
||||
if aux > 0.5:
|
||||
idx_r = np.argmax(mask[idx])
|
||||
z = BF / avg_disparities[idx][idx_r]
|
||||
if 1 < z < 80:
|
||||
dic_out['xyzd'][idx][2] = z
|
||||
dic_out['xyzd'][idx][3] = torch.norm(dic_out['xyzd'][idx][0:3])
|
||||
return dic_out
|
||||
102
monstereo/network/pifpaf.py
Normal file
102
monstereo/network/pifpaf.py
Normal file
@ -0,0 +1,102 @@
|
||||
|
||||
import glob
|
||||
|
||||
import numpy as np
|
||||
import torchvision
|
||||
import torch
|
||||
from PIL import Image, ImageFile
|
||||
from openpifpaf.network import nets
|
||||
from openpifpaf import decoder
|
||||
|
||||
from .process import image_transform
|
||||
|
||||
|
||||
class ImageList(torch.utils.data.Dataset):
|
||||
"""It defines transformations to apply to images and outputs of the dataloader"""
|
||||
def __init__(self, image_paths, scale):
|
||||
self.image_paths = image_paths
|
||||
self.image_paths.sort()
|
||||
self.scale = scale
|
||||
|
||||
def __getitem__(self, index):
|
||||
image_path = self.image_paths[index]
|
||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||||
with open(image_path, 'rb') as f:
|
||||
image = Image.open(f).convert('RGB')
|
||||
|
||||
if self.scale > 1.01 or self.scale < 0.99:
|
||||
image = torchvision.transforms.functional.resize(image,
|
||||
(round(self.scale * image.size[1]),
|
||||
round(self.scale * image.size[0])),
|
||||
interpolation=Image.BICUBIC)
|
||||
# PIL images are not iterables
|
||||
original_image = torchvision.transforms.functional.to_tensor(image) # 0-255 --> 0-1
|
||||
image = image_transform(image)
|
||||
|
||||
return image_path, original_image, image
|
||||
|
||||
def __len__(self):
|
||||
return len(self.image_paths)
|
||||
|
||||
|
||||
def factory_from_args(args):
|
||||
|
||||
# Merge the model_pifpaf argument
|
||||
if not args.checkpoint:
|
||||
args.checkpoint = 'resnet152' # Default model Resnet 152
|
||||
# glob
|
||||
if args.glob:
|
||||
args.images += glob.glob(args.glob)
|
||||
if not args.images:
|
||||
raise Exception("no image files given")
|
||||
|
||||
# add args.device
|
||||
args.device = torch.device('cpu')
|
||||
args.pin_memory = False
|
||||
if torch.cuda.is_available():
|
||||
args.device = torch.device('cuda')
|
||||
args.pin_memory = True
|
||||
|
||||
# Add num_workers
|
||||
args.loader_workers = 8
|
||||
|
||||
# Add visualization defaults
|
||||
args.figure_width = 10
|
||||
args.dpi_factor = 1.0
|
||||
|
||||
return args
|
||||
|
||||
|
||||
class PifPaf:
|
||||
def __init__(self, args):
|
||||
"""Instanciate the mdodel"""
|
||||
factory_from_args(args)
|
||||
model_pifpaf, _ = nets.factory_from_args(args)
|
||||
model_pifpaf = model_pifpaf.to(args.device)
|
||||
self.processor = decoder.factory_from_args(args, model_pifpaf)
|
||||
self.keypoints_whole = []
|
||||
|
||||
# Scale the keypoints to the original image size for printing (if not webcam)
|
||||
self.scale_np = np.array([args.scale, args.scale, 1] * 17).reshape(17, 3)
|
||||
|
||||
def fields(self, processed_images):
|
||||
"""Encoder for pif and paf fields"""
|
||||
fields_batch = self.processor.fields(processed_images)
|
||||
return fields_batch
|
||||
|
||||
def forward(self, image, processed_image_cpu, fields):
|
||||
"""Decoder, from pif and paf fields to keypoints"""
|
||||
self.processor.set_cpu_image(image, processed_image_cpu)
|
||||
keypoint_sets, scores = self.processor.keypoint_sets(fields)
|
||||
|
||||
if keypoint_sets.size > 0:
|
||||
self.keypoints_whole.append(np.around((keypoint_sets / self.scale_np), 1)
|
||||
.reshape(keypoint_sets.shape[0], -1).tolist())
|
||||
|
||||
pifpaf_out = [
|
||||
{'keypoints': np.around(kps / self.scale_np, 1).reshape(-1).tolist(),
|
||||
'bbox': [np.min(kps[:, 0]) / self.scale_np[0, 0], np.min(kps[:, 1]) / self.scale_np[0, 0],
|
||||
np.max(kps[:, 0]) / self.scale_np[0, 0], np.max(kps[:, 1]) / self.scale_np[0, 0]]}
|
||||
for kps in keypoint_sets
|
||||
]
|
||||
return keypoint_sets, scores, pifpaf_out
|
||||
360
monstereo/network/process.py
Normal file
360
monstereo/network/process.py
Normal file
@ -0,0 +1,360 @@
|
||||
|
||||
import json
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision
|
||||
|
||||
from ..utils import get_keypoints, pixel_to_camera, to_cartesian, back_correct_angles
|
||||
|
||||
BF = 0.54 * 721
|
||||
z_min = 4
|
||||
z_max = 60
|
||||
D_MIN = BF / z_max
|
||||
D_MAX = BF / z_min
|
||||
|
||||
|
||||
def preprocess_monstereo(keypoints, keypoints_r, kk):
|
||||
"""
|
||||
Combine left and right keypoints in all-vs-all settings
|
||||
"""
|
||||
clusters = []
|
||||
inputs_l = preprocess_monoloco(keypoints, kk)
|
||||
inputs_r = preprocess_monoloco(keypoints_r, kk)
|
||||
|
||||
inputs = torch.empty((0, 68)).to(inputs_l.device)
|
||||
for idx, inp_l in enumerate(inputs_l.split(1)):
|
||||
clst = 0
|
||||
# inp_l = torch.cat((inp_l, cat[:, idx:idx+1]), dim=1)
|
||||
for idx_r, inp_r in enumerate(inputs_r.split(1)):
|
||||
# if D_MIN < avg_disparities[idx_r] < D_MAX: # Check the range of disparities
|
||||
inp_r = inputs_r[idx_r, :]
|
||||
inp = torch.cat((inp_l, inp_l - inp_r), dim=1) # (1,68)
|
||||
inputs = torch.cat((inputs, inp), dim=0)
|
||||
clst += 1
|
||||
clusters.append(clst)
|
||||
return inputs, clusters
|
||||
|
||||
|
||||
def preprocess_monoloco(keypoints, kk, zero_center=False):
|
||||
|
||||
""" Preprocess batches of inputs
|
||||
keypoints = torch tensors of (m, 3, 17) or list [3,17]
|
||||
Outputs = torch tensors of (m, 34) in meters normalized (z=1) and zero-centered using the center of the box
|
||||
"""
|
||||
if isinstance(keypoints, list):
|
||||
keypoints = torch.tensor(keypoints)
|
||||
if isinstance(kk, list):
|
||||
kk = torch.tensor(kk)
|
||||
# Projection in normalized image coordinates and zero-center with the center of the bounding box
|
||||
uv_center = get_keypoints(keypoints, mode='center')
|
||||
xy1_center = pixel_to_camera(uv_center, kk, 10)
|
||||
xy1_all = pixel_to_camera(keypoints[:, 0:2, :], kk, 10)
|
||||
if zero_center:
|
||||
kps_norm = xy1_all - xy1_center.unsqueeze(1) # (m, 17, 3) - (m, 1, 3)
|
||||
else:
|
||||
kps_norm = xy1_all
|
||||
kps_out = kps_norm[:, :, 0:2].reshape(kps_norm.size()[0], -1) # no contiguous for view
|
||||
# kps_out = torch.cat((kps_out, keypoints[:, 2, :]), dim=1)
|
||||
return kps_out
|
||||
|
||||
|
||||
def factory_for_gt(im_size, name=None, path_gt=None, verbose=True):
|
||||
"""Look for ground-truth annotations file and define calibration matrix based on image size """
|
||||
|
||||
try:
|
||||
with open(path_gt, 'r') as f:
|
||||
dic_names = json.load(f)
|
||||
if verbose:
|
||||
print('-' * 120 + "\nGround-truth file opened")
|
||||
except (FileNotFoundError, TypeError):
|
||||
if verbose:
|
||||
print('-' * 120 + "\nGround-truth file not found")
|
||||
dic_names = {}
|
||||
|
||||
try:
|
||||
kk = dic_names[name]['K']
|
||||
dic_gt = dic_names[name]
|
||||
if verbose:
|
||||
print("Matched ground-truth file!")
|
||||
except KeyError:
|
||||
dic_gt = None
|
||||
x_factor = im_size[0] / 1600
|
||||
y_factor = im_size[1] / 900
|
||||
pixel_factor = (x_factor + y_factor) / 2 # 1.7 for MOT
|
||||
# pixel_factor = 1
|
||||
if im_size[0] / im_size[1] > 2.5:
|
||||
kk = [[718.3351, 0., 600.3891], [0., 718.3351, 181.5122], [0., 0., 1.]] # Kitti calibration
|
||||
else:
|
||||
kk = [[1266.4 * pixel_factor, 0., 816.27 * x_factor],
|
||||
[0, 1266.4 * pixel_factor, 491.5 * y_factor],
|
||||
[0., 0., 1.]] # nuScenes calibration
|
||||
if verbose:
|
||||
print("Using a standard calibration matrix...")
|
||||
|
||||
return kk, dic_gt
|
||||
|
||||
|
||||
def laplace_sampling(outputs, n_samples):
|
||||
|
||||
torch.manual_seed(1)
|
||||
mu = outputs[:, 0]
|
||||
bi = torch.abs(outputs[:, 1])
|
||||
|
||||
# Analytical
|
||||
# uu = np.random.uniform(low=-0.5, high=0.5, size=mu.shape[0])
|
||||
# xx = mu - bi * np.sign(uu) * np.log(1 - 2 * np.abs(uu))
|
||||
|
||||
# Sampling
|
||||
cuda_check = outputs.is_cuda
|
||||
if cuda_check:
|
||||
get_device = outputs.get_device()
|
||||
device = torch.device(type="cuda", index=get_device)
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
laplace = torch.distributions.Laplace(mu, bi)
|
||||
xx = laplace.sample((n_samples,)).to(device)
|
||||
|
||||
return xx
|
||||
|
||||
|
||||
def unnormalize_bi(loc):
|
||||
"""
|
||||
Unnormalize relative bi of a nunmpy array
|
||||
Input --> tensor of (m, 2)
|
||||
"""
|
||||
assert loc.size()[1] == 2, "size of the output tensor should be (m, 2)"
|
||||
bi = torch.exp(loc[:, 1:2]) * loc[:, 0:1]
|
||||
|
||||
return bi
|
||||
|
||||
|
||||
def preprocess_mask(dir_ann, basename, mode='left'):
|
||||
|
||||
dir_ann = os.path.join(os.path.split(dir_ann)[0], 'mask')
|
||||
if mode == 'left':
|
||||
path_ann = os.path.join(dir_ann, basename + '.json')
|
||||
elif mode == 'right':
|
||||
path_ann = os.path.join(dir_ann + '_right', basename + '.json')
|
||||
|
||||
from ..utils import open_annotations
|
||||
dic = open_annotations(path_ann)
|
||||
if isinstance(dic, list):
|
||||
return [], []
|
||||
|
||||
keypoints = []
|
||||
for kps in dic['keypoints']:
|
||||
kps = prepare_pif_kps(np.array(kps).reshape(51,).tolist())
|
||||
keypoints.append(kps)
|
||||
return dic['boxes'], keypoints
|
||||
|
||||
|
||||
def preprocess_pifpaf(annotations, im_size=None, enlarge_boxes=True, min_conf=0.):
|
||||
"""
|
||||
Preprocess pif annotations:
|
||||
1. enlarge the box of 10%
|
||||
2. Constraint it inside the image (if image_size provided)
|
||||
"""
|
||||
|
||||
boxes = []
|
||||
keypoints = []
|
||||
enlarge = 1 if enlarge_boxes else 2 # Avoid enlarge boxes for social distancing
|
||||
|
||||
for dic in annotations:
|
||||
kps = prepare_pif_kps(dic['keypoints'])
|
||||
box = dic['bbox']
|
||||
try:
|
||||
conf = dic['score']
|
||||
# Enlarge boxes
|
||||
delta_h = (box[3]) / (10 * enlarge)
|
||||
delta_w = (box[2]) / (5 * enlarge)
|
||||
# from width height to corners
|
||||
box[2] += box[0]
|
||||
box[3] += box[1]
|
||||
|
||||
except KeyError:
|
||||
all_confs = np.array(kps[2])
|
||||
score_weights = np.ones(17)
|
||||
score_weights[:3] = 3.0
|
||||
score_weights[5:] = 0.1
|
||||
# conf = np.sum(score_weights * np.sort(all_confs)[::-1])
|
||||
conf = float(np.mean(all_confs))
|
||||
# Add 15% for y and 20% for x
|
||||
delta_h = (box[3] - box[1]) / (7 * enlarge)
|
||||
delta_w = (box[2] - box[0]) / (3.5 * enlarge)
|
||||
assert delta_h > -5 and delta_w > -5, "Bounding box <=0"
|
||||
|
||||
box[0] -= delta_w
|
||||
box[1] -= delta_h
|
||||
box[2] += delta_w
|
||||
box[3] += delta_h
|
||||
|
||||
# Put the box inside the image
|
||||
if im_size is not None:
|
||||
box[0] = max(0, box[0])
|
||||
box[1] = max(0, box[1])
|
||||
box[2] = min(box[2], im_size[0])
|
||||
box[3] = min(box[3], im_size[1])
|
||||
|
||||
if conf >= min_conf:
|
||||
box.append(conf)
|
||||
boxes.append(box)
|
||||
keypoints.append(kps)
|
||||
|
||||
return boxes, keypoints
|
||||
|
||||
|
||||
def prepare_pif_kps(kps_in):
|
||||
"""Convert from a list of 51 to a list of 3, 17"""
|
||||
|
||||
assert len(kps_in) % 3 == 0, "keypoints expected as a multiple of 3"
|
||||
xxs = kps_in[0:][::3]
|
||||
yys = kps_in[1:][::3] # from offset 1 every 3
|
||||
ccs = kps_in[2:][::3]
|
||||
|
||||
return [xxs, yys, ccs]
|
||||
|
||||
|
||||
def image_transform(image):
|
||||
|
||||
normalize = torchvision.transforms.Normalize(
|
||||
mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225]
|
||||
)
|
||||
transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor(), normalize, ])
|
||||
return transforms(image)
|
||||
|
||||
|
||||
def extract_outputs(outputs, tasks=()):
|
||||
"""
|
||||
Extract the outputs for multi-task training and predictions
|
||||
Inputs:
|
||||
tensor (m, 10) or (m,9) if monoloco
|
||||
Outputs:
|
||||
- if tasks are provided return ordered list of raw tensors
|
||||
- else return a dictionary with processed outputs
|
||||
"""
|
||||
dic_out = {'x': outputs[:, 0:1],
|
||||
'y': outputs[:, 1:2],
|
||||
'd': outputs[:, 2:4],
|
||||
'h': outputs[:, 4:5],
|
||||
'w': outputs[:, 5:6],
|
||||
'l': outputs[:, 6:7],
|
||||
'ori': outputs[:, 7:9]}
|
||||
|
||||
if outputs.shape[1] == 10:
|
||||
dic_out['aux'] = outputs[:, 9:10]
|
||||
|
||||
# Multi-task training
|
||||
if len(tasks) >= 1:
|
||||
assert isinstance(tasks, tuple), "tasks need to be a tuple"
|
||||
return [dic_out[task] for task in tasks]
|
||||
|
||||
# Preprocess the tensor
|
||||
# AV_H, AV_W, AV_L, HWL_STD = 1.72, 0.75, 0.68, 0.1
|
||||
bi = unnormalize_bi(dic_out['d'])
|
||||
dic_out['bi'] = bi
|
||||
|
||||
dic_out = {key: el.detach().cpu() for key, el in dic_out.items()}
|
||||
x = to_cartesian(outputs[:, 0:3].detach().cpu(), mode='x')
|
||||
y = to_cartesian(outputs[:, 0:3].detach().cpu(), mode='y')
|
||||
d = dic_out['d'][:, 0:1]
|
||||
z = torch.sqrt(d**2 - x**2 - y**2)
|
||||
dic_out['xyzd'] = torch.cat((x, y, z, d), dim=1)
|
||||
dic_out.pop('d')
|
||||
dic_out.pop('x')
|
||||
dic_out.pop('y')
|
||||
dic_out['d'] = d
|
||||
|
||||
yaw_pred = torch.atan2(dic_out['ori'][:, 0:1], dic_out['ori'][:, 1:2])
|
||||
yaw_orig = back_correct_angles(yaw_pred, dic_out['xyzd'][:, 0:3])
|
||||
dic_out['yaw'] = (yaw_pred, yaw_orig) # alpha, ry
|
||||
|
||||
if outputs.shape[1] == 10:
|
||||
dic_out['aux'] = torch.sigmoid(dic_out['aux'])
|
||||
|
||||
return dic_out
|
||||
|
||||
|
||||
def extract_labels_aux(labels, tasks=None):
|
||||
|
||||
dic_gt_out = {'aux': labels[:, 0:1]}
|
||||
|
||||
if tasks is not None:
|
||||
assert isinstance(tasks, tuple), "tasks need to be a tuple"
|
||||
return [dic_gt_out[task] for task in tasks]
|
||||
|
||||
dic_gt_out = {key: el.detach().cpu() for key, el in dic_gt_out.items()}
|
||||
return dic_gt_out
|
||||
|
||||
|
||||
def extract_labels(labels, tasks=None):
|
||||
|
||||
dic_gt_out = {'x': labels[:, 0:1], 'y': labels[:, 1:2], 'z': labels[:, 2:3], 'd': labels[:, 3:4],
|
||||
'h': labels[:, 4:5], 'w': labels[:, 5:6], 'l': labels[:, 6:7],
|
||||
'ori': labels[:, 7:9], 'aux': labels[:, 10:11]}
|
||||
|
||||
if tasks is not None:
|
||||
assert isinstance(tasks, tuple), "tasks need to be a tuple"
|
||||
return [dic_gt_out[task] for task in tasks]
|
||||
|
||||
dic_gt_out = {key: el.detach().cpu() for key, el in dic_gt_out.items()}
|
||||
return dic_gt_out
|
||||
|
||||
|
||||
def cluster_outputs(outputs, clusters):
|
||||
"""Cluster the outputs based on the number of right keypoints"""
|
||||
|
||||
# Check for "no right keypoints" condition
|
||||
if clusters == 0:
|
||||
clusters = max(1, round(outputs.shape[0] / 2))
|
||||
|
||||
assert outputs.shape[0] % clusters == 0, "Unexpected number of inputs"
|
||||
outputs = outputs.view(-1, clusters, outputs.shape[1])
|
||||
return outputs
|
||||
|
||||
|
||||
def filter_outputs(outputs):
|
||||
"""Extract a single output for each left keypoint"""
|
||||
|
||||
# Max of auxiliary task
|
||||
val = outputs[:, :, -1]
|
||||
best_val, _ = val.max(dim=1, keepdim=True)
|
||||
mask = val >= best_val
|
||||
output = outputs[mask] # broadcasting happens only if 3rd dim not present
|
||||
return output, mask
|
||||
|
||||
|
||||
def extract_outputs_mono(outputs, tasks=None):
|
||||
"""
|
||||
Extract the outputs for single di
|
||||
Inputs:
|
||||
tensor (m, 10) or (m,9) if monoloco
|
||||
Outputs:
|
||||
- if tasks are provided return ordered list of raw tensors
|
||||
- else return a dictionary with processed outputs
|
||||
"""
|
||||
dic_out = {'xyz': outputs[:, 0:3], 'zb': outputs[:, 2:4],
|
||||
'h': outputs[:, 4:5], 'w': outputs[:, 5:6], 'l': outputs[:, 6:7], 'ori': outputs[:, 7:9]}
|
||||
|
||||
# Multi-task training
|
||||
if tasks is not None:
|
||||
assert isinstance(tasks, tuple), "tasks need to be a tuple"
|
||||
return [dic_out[task] for task in tasks]
|
||||
|
||||
# Preprocess the tensor
|
||||
bi = unnormalize_bi(dic_out['zb'])
|
||||
|
||||
dic_out = {key: el.detach().cpu() for key, el in dic_out.items()}
|
||||
dd = torch.norm(dic_out['xyz'], p=2, dim=1).view(-1, 1)
|
||||
dic_out['xyzd'] = torch.cat((dic_out['xyz'], dd), dim=1)
|
||||
|
||||
dic_out['d'], dic_out['bi'] = dd, bi
|
||||
|
||||
yaw_pred = torch.atan2(dic_out['ori'][:, 0:1], dic_out['ori'][:, 1:2])
|
||||
yaw_orig = back_correct_angles(yaw_pred, dic_out['xyzd'][:, 0:3])
|
||||
|
||||
dic_out['yaw'] = (yaw_pred, yaw_orig) # alpha, ry
|
||||
return dic_out
|
||||
150
monstereo/predict.py
Normal file
150
monstereo/predict.py
Normal file
@ -0,0 +1,150 @@
|
||||
|
||||
# pylint: disable=too-many-statements, too-many-branches, undefined-loop-variable
|
||||
|
||||
import os
|
||||
import json
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from .visuals.printer import Printer
|
||||
from .visuals.pifpaf_show import KeypointPainter, image_canvas
|
||||
from .network import PifPaf, ImageList, Loco
|
||||
from .network.process import factory_for_gt, preprocess_pifpaf
|
||||
|
||||
|
||||
def predict(args):
|
||||
|
||||
cnt = 0
|
||||
|
||||
# Load Models
|
||||
pifpaf = PifPaf(args)
|
||||
assert args.mode in ('mono', 'stereo', 'pifpaf')
|
||||
|
||||
if 'mono' in args.mode:
|
||||
monoloco = Loco(model=args.model, net='monoloco_pp',
|
||||
device=args.device, n_dropout=args.n_dropout, p_dropout=args.dropout)
|
||||
|
||||
if 'stereo' in args.mode:
|
||||
monstereo = Loco(model=args.model, net='monstereo',
|
||||
device=args.device, n_dropout=args.n_dropout, p_dropout=args.dropout)
|
||||
|
||||
# data
|
||||
data = ImageList(args.images, scale=args.scale)
|
||||
if args.mode == 'stereo':
|
||||
assert len(data.image_paths) % 2 == 0, "Odd number of images in a stereo setting"
|
||||
bs = 2
|
||||
else:
|
||||
bs = 1
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
data, batch_size=bs, shuffle=False,
|
||||
pin_memory=args.pin_memory, num_workers=args.loader_workers)
|
||||
|
||||
for idx, (image_paths, image_tensors, processed_images_cpu) in enumerate(data_loader):
|
||||
images = image_tensors.permute(0, 2, 3, 1)
|
||||
|
||||
processed_images = processed_images_cpu.to(args.device, non_blocking=True)
|
||||
fields_batch = pifpaf.fields(processed_images)
|
||||
|
||||
# unbatch stereo pair
|
||||
for ii, (image_path, image, processed_image_cpu, fields) in enumerate(zip(
|
||||
image_paths, images, processed_images_cpu, fields_batch)):
|
||||
|
||||
if args.output_directory is None:
|
||||
output_path = image_paths[0]
|
||||
else:
|
||||
file_name = os.path.basename(image_paths[0])
|
||||
output_path = os.path.join(args.output_directory, file_name)
|
||||
print('image', idx, image_path, output_path)
|
||||
keypoint_sets, scores, pifpaf_out = pifpaf.forward(image, processed_image_cpu, fields)
|
||||
|
||||
if ii == 0:
|
||||
pifpaf_outputs = [keypoint_sets, scores, pifpaf_out] # keypoints_sets and scores for pifpaf printing
|
||||
images_outputs = [image] # List of 1 or 2 elements with pifpaf tensor and monoloco original image
|
||||
pifpaf_outs = {'left': pifpaf_out}
|
||||
image_path_l = image_path
|
||||
else:
|
||||
pifpaf_outs['right'] = pifpaf_out
|
||||
|
||||
if args.mode in ('stereo', 'mono'):
|
||||
# Extract calibration matrix and ground truth file if present
|
||||
with open(image_path_l, 'rb') as f:
|
||||
pil_image = Image.open(f).convert('RGB')
|
||||
images_outputs.append(pil_image)
|
||||
|
||||
im_name = os.path.basename(image_path_l)
|
||||
im_size = (float(image.size()[1] / args.scale), float(image.size()[0] / args.scale)) # Original
|
||||
kk, dic_gt = factory_for_gt(im_size, name=im_name, path_gt=args.path_gt)
|
||||
|
||||
# Preprocess pifpaf outputs and run monoloco
|
||||
boxes, keypoints = preprocess_pifpaf(pifpaf_outs['left'], im_size, enlarge_boxes=False)
|
||||
|
||||
if args.mode == 'mono':
|
||||
print("Prediction with MonoLoco++")
|
||||
dic_out = monoloco.forward(keypoints, kk)
|
||||
dic_out = monoloco.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
||||
|
||||
else:
|
||||
print("Prediction with MonStereo")
|
||||
boxes_r, keypoints_r = preprocess_pifpaf(pifpaf_outs['right'], im_size)
|
||||
dic_out = monstereo.forward(keypoints, kk, keypoints_r=keypoints_r)
|
||||
dic_out = monstereo.post_process(dic_out, boxes, keypoints, kk, dic_gt)
|
||||
|
||||
else:
|
||||
dic_out = defaultdict(list)
|
||||
kk = None
|
||||
|
||||
factory_outputs(args, images_outputs, output_path, pifpaf_outputs, dic_out=dic_out, kk=kk)
|
||||
print('Image {}\n'.format(cnt) + '-' * 120)
|
||||
cnt += 1
|
||||
|
||||
|
||||
def factory_outputs(args, images_outputs, output_path, pifpaf_outputs, dic_out=None, kk=None):
|
||||
"""Output json files or images according to the choice"""
|
||||
|
||||
# Save json file
|
||||
if args.mode == 'pifpaf':
|
||||
keypoint_sets, scores, pifpaf_out = pifpaf_outputs[:]
|
||||
|
||||
# Visualizer
|
||||
keypoint_painter = KeypointPainter(show_box=False)
|
||||
skeleton_painter = KeypointPainter(show_box=False, color_connections=True, markersize=1, linewidth=4)
|
||||
|
||||
if 'json' in args.output_types and keypoint_sets.size > 0:
|
||||
with open(output_path + '.pifpaf.json', 'w') as f:
|
||||
json.dump(pifpaf_out, f)
|
||||
|
||||
if 'keypoints' in args.output_types:
|
||||
with image_canvas(images_outputs[0],
|
||||
output_path + '.keypoints.png',
|
||||
show=args.show,
|
||||
fig_width=args.figure_width,
|
||||
dpi_factor=args.dpi_factor) as ax:
|
||||
keypoint_painter.keypoints(ax, keypoint_sets)
|
||||
|
||||
if 'skeleton' in args.output_types:
|
||||
with image_canvas(images_outputs[0],
|
||||
output_path + '.skeleton.png',
|
||||
show=args.show,
|
||||
fig_width=args.figure_width,
|
||||
dpi_factor=args.dpi_factor) as ax:
|
||||
skeleton_painter.keypoints(ax, keypoint_sets, scores=scores)
|
||||
|
||||
else:
|
||||
if any((xx in args.output_types for xx in ['front', 'bird', 'combined'])):
|
||||
epistemic = False
|
||||
if args.n_dropout > 0:
|
||||
epistemic = True
|
||||
|
||||
if dic_out['boxes']: # Only print in case of detections
|
||||
printer = Printer(images_outputs[1], output_path, kk, output_types=args.output_types
|
||||
, z_max=args.z_max, epistemic=epistemic)
|
||||
figures, axes = printer.factory_axes()
|
||||
printer.draw(figures, axes, dic_out, images_outputs[1], show_all=args.show_all, draw_box=args.draw_box,
|
||||
save=True, show=args.show)
|
||||
|
||||
if 'json' in args.output_types:
|
||||
with open(os.path.join(output_path + '.monoloco.json'), 'w') as ff:
|
||||
json.dump(dic_out, ff)
|
||||
0
monstereo/prep/__init__.py
Normal file
0
monstereo/prep/__init__.py
Normal file
351
monstereo/prep/prep_kitti.py
Normal file
351
monstereo/prep/prep_kitti.py
Normal file
@ -0,0 +1,351 @@
|
||||
|
||||
# pylint: disable=too-many-statements, too-many-branches, too-many-nested-blocks
|
||||
|
||||
"""Preprocess annotations with KITTI ground-truth"""
|
||||
|
||||
import os
|
||||
import glob
|
||||
import copy
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
import json
|
||||
import datetime
|
||||
from PIL import Image
|
||||
|
||||
import torch
|
||||
import cv2
|
||||
|
||||
from ..utils import split_training, parse_ground_truth, get_iou_matches, append_cluster, factory_file, \
|
||||
extract_stereo_matches, get_category, normalize_hwl, make_new_directory
|
||||
from ..network.process import preprocess_pifpaf, preprocess_monoloco
|
||||
from .transforms import flip_inputs, flip_labels, height_augmentation
|
||||
|
||||
|
||||
class PreprocessKitti:
|
||||
"""Prepare arrays with same format as nuScenes preprocessing but using ground truth txt files"""
|
||||
|
||||
# AV_W = 0.68
|
||||
# AV_L = 0.75
|
||||
# AV_H = 1.72
|
||||
# WLH_STD = 0.1
|
||||
|
||||
# SOCIAL DISTANCING PARAMETERS
|
||||
THRESHOLD_DIST = 2 # Threshold to check distance of people
|
||||
RADII = (0.3, 0.5, 1) # expected radii of the o-space
|
||||
SOCIAL_DISTANCE = True
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
dic_jo = {'train': dict(X=[], Y=[], names=[], kps=[], K=[],
|
||||
clst=defaultdict(lambda: defaultdict(list))),
|
||||
'val': dict(X=[], Y=[], names=[], kps=[], K=[],
|
||||
clst=defaultdict(lambda: defaultdict(list))),
|
||||
'test': dict(X=[], Y=[], names=[], kps=[], K=[],
|
||||
clst=defaultdict(lambda: defaultdict(list)))}
|
||||
dic_names = defaultdict(lambda: defaultdict(list))
|
||||
dic_std = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
def __init__(self, dir_ann, iou_min, monocular=False):
|
||||
|
||||
self.dir_ann = dir_ann
|
||||
self.iou_min = iou_min
|
||||
self.monocular = monocular
|
||||
self.dir_gt = os.path.join('data', 'kitti', 'gt')
|
||||
self.dir_images = '/data/lorenzo-data/kitti/original_images/training/image_2'
|
||||
self.dir_byc_l = '/data/lorenzo-data/kitti/object_detection/left'
|
||||
self.names_gt = tuple(os.listdir(self.dir_gt))
|
||||
self.dir_kk = os.path.join('data', 'kitti', 'calib')
|
||||
self.list_gt = glob.glob(self.dir_gt + '/*.txt')
|
||||
assert os.path.exists(self.dir_gt), "Ground truth dir does not exist"
|
||||
assert os.path.exists(self.dir_ann), "Annotation dir does not exist"
|
||||
|
||||
now = datetime.datetime.now()
|
||||
now_time = now.strftime("%Y%m%d-%H%M")[2:]
|
||||
dir_out = os.path.join('data', 'arrays')
|
||||
self.path_joints = os.path.join(dir_out, 'joints-kitti-' + now_time + '.json')
|
||||
self.path_names = os.path.join(dir_out, 'names-kitti-' + now_time + '.json')
|
||||
path_train = os.path.join('splits', 'kitti_train.txt')
|
||||
path_val = os.path.join('splits', 'kitti_val.txt')
|
||||
self.set_train, self.set_val = split_training(self.names_gt, path_train, path_val)
|
||||
|
||||
def run(self):
|
||||
|
||||
cnt_match_l, cnt_match_r, cnt_pair, cnt_pair_tot, cnt_extra_pair, cnt_files, cnt_files_ped, cnt_fnf, \
|
||||
cnt_tot, cnt_ambiguous, cnt_cyclist = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
cnt_mono = {'train': 0, 'val': 0, 'test': 0}
|
||||
cnt_gt = cnt_mono.copy()
|
||||
cnt_stereo = cnt_mono.copy()
|
||||
correct_ped, correct_byc, wrong_ped, wrong_byc = 0, 0, 0, 0
|
||||
cnt_30, cnt_less_30 = 0, 0
|
||||
|
||||
# self.names_gt = ('002282.txt',)
|
||||
for name in self.names_gt:
|
||||
path_gt = os.path.join(self.dir_gt, name)
|
||||
basename, _ = os.path.splitext(name)
|
||||
path_im = os.path.join(self.dir_images, basename + '.png')
|
||||
phase, flag = self._factory_phase(name)
|
||||
if flag:
|
||||
cnt_fnf += 1
|
||||
continue
|
||||
|
||||
if phase == 'train':
|
||||
min_conf = 0
|
||||
category = 'all'
|
||||
else: # Remove for original results
|
||||
min_conf = 0.1
|
||||
category = 'pedestrian'
|
||||
|
||||
# Extract ground truth
|
||||
boxes_gt, ys, _, _ = parse_ground_truth(path_gt, category=category, spherical=True)
|
||||
cnt_gt[phase] += len(boxes_gt)
|
||||
cnt_files += 1
|
||||
cnt_files_ped += min(len(boxes_gt), 1) # if no boxes 0 else 1
|
||||
|
||||
# Extract keypoints
|
||||
path_calib = os.path.join(self.dir_kk, basename + '.txt')
|
||||
annotations, kk, tt = factory_file(path_calib, self.dir_ann, basename)
|
||||
|
||||
self.dic_names[basename + '.png']['boxes'] = copy.deepcopy(boxes_gt)
|
||||
self.dic_names[basename + '.png']['ys'] = copy.deepcopy(ys)
|
||||
self.dic_names[basename + '.png']['K'] = copy.deepcopy(kk)
|
||||
|
||||
# Check image size
|
||||
with Image.open(path_im) as im:
|
||||
width, height = im.size
|
||||
|
||||
boxes, keypoints = preprocess_pifpaf(annotations, im_size=(width, height), min_conf=min_conf)
|
||||
|
||||
if keypoints:
|
||||
annotations_r, kk_r, tt_r = factory_file(path_calib, self.dir_ann, basename, mode='right')
|
||||
boxes_r, keypoints_r = preprocess_pifpaf(annotations_r, im_size=(width, height), min_conf=min_conf)
|
||||
cat = get_category(keypoints, os.path.join(self.dir_byc_l, basename + '.json'))
|
||||
|
||||
if not keypoints_r: # Case of no detection
|
||||
all_boxes_gt, all_ys = [boxes_gt], [ys]
|
||||
boxes_r, keypoints_r = boxes[0:1].copy(), keypoints[0:1].copy()
|
||||
all_boxes, all_keypoints = [boxes], [keypoints]
|
||||
all_keypoints_r = [keypoints_r]
|
||||
else:
|
||||
|
||||
# Horizontal Flipping for training
|
||||
if phase == 'train':
|
||||
# GT)
|
||||
boxes_gt_flip, ys_flip = flip_labels(boxes_gt, ys, im_w=width)
|
||||
# New left
|
||||
boxes_flip = flip_inputs(boxes_r, im_w=width, mode='box')
|
||||
keypoints_flip = flip_inputs(keypoints_r, im_w=width)
|
||||
|
||||
# New right
|
||||
keypoints_r_flip = flip_inputs(keypoints, im_w=width)
|
||||
|
||||
# combine the 2 modes
|
||||
all_boxes_gt = [boxes_gt, boxes_gt_flip]
|
||||
all_ys = [ys, ys_flip]
|
||||
all_boxes = [boxes, boxes_flip]
|
||||
all_keypoints = [keypoints, keypoints_flip]
|
||||
all_keypoints_r = [keypoints_r, keypoints_r_flip]
|
||||
|
||||
else:
|
||||
all_boxes_gt, all_ys = [boxes_gt], [ys]
|
||||
all_boxes, all_keypoints = [boxes], [keypoints]
|
||||
all_keypoints_r = [keypoints_r]
|
||||
|
||||
# Match each set of keypoint with a ground truth
|
||||
self.dic_jo[phase]['K'].append(kk)
|
||||
for ii, boxes_gt in enumerate(all_boxes_gt):
|
||||
keypoints, keypoints_r = torch.tensor(all_keypoints[ii]), torch.tensor(all_keypoints_r[ii])
|
||||
ys = all_ys[ii]
|
||||
matches = get_iou_matches(all_boxes[ii], boxes_gt, self.iou_min)
|
||||
for (idx, idx_gt) in matches:
|
||||
keypoint = keypoints[idx:idx + 1]
|
||||
lab = ys[idx_gt][:-1]
|
||||
|
||||
# Preprocess MonoLoco++
|
||||
if self.monocular:
|
||||
inp = preprocess_monoloco(keypoint, kk).view(-1).tolist()
|
||||
lab = normalize_hwl(lab)
|
||||
if ys[idx_gt][10] < 0.5:
|
||||
self.dic_jo[phase]['kps'].append(keypoint.tolist())
|
||||
self.dic_jo[phase]['X'].append(inp)
|
||||
self.dic_jo[phase]['Y'].append(lab)
|
||||
self.dic_jo[phase]['names'].append(name) # One image name for each annotation
|
||||
append_cluster(self.dic_jo, phase, inp, lab, keypoint)
|
||||
cnt_mono[phase] += 1
|
||||
cnt_tot += 1
|
||||
|
||||
# Preprocess MonStereo
|
||||
else:
|
||||
zz = ys[idx_gt][2]
|
||||
stereo_matches, cnt_amb = extract_stereo_matches(keypoint, keypoints_r, zz,
|
||||
phase=phase, seed=cnt_pair_tot)
|
||||
cnt_match_l += 1 if ii < 0.1 else 0 # matched instances
|
||||
cnt_match_r += 1 if ii > 0.9 else 0
|
||||
cnt_ambiguous += cnt_amb
|
||||
|
||||
# Monitor precision of classes
|
||||
if phase == 'val':
|
||||
if ys[idx_gt][10] == cat[idx] == 1:
|
||||
correct_byc += 1
|
||||
elif ys[idx_gt][10] == cat[idx] == 0:
|
||||
correct_ped += 1
|
||||
elif ys[idx_gt][10] != cat[idx] and ys[idx_gt][10] == 1:
|
||||
wrong_byc += 1
|
||||
elif ys[idx_gt][10] != cat[idx] and ys[idx_gt][10] == 0:
|
||||
wrong_ped += 1
|
||||
|
||||
cnt_cyclist += 1 if ys[idx_gt][10] == 1 else 0
|
||||
|
||||
for num, (idx_r, s_match) in enumerate(stereo_matches):
|
||||
label = ys[idx_gt][:-1] + [s_match]
|
||||
if s_match > 0.9:
|
||||
cnt_pair += 1
|
||||
|
||||
# Remove noise of very far instances for validation
|
||||
# if (phase == 'val') and (ys[idx_gt][3] >= 50):
|
||||
# continue
|
||||
|
||||
# ---> Save only positives unless there is no positive (keep positive flip and augm)
|
||||
# if num > 0 and s_match < 0.9:
|
||||
# continue
|
||||
|
||||
# Height augmentation
|
||||
cnt_pair_tot += 1
|
||||
cnt_extra_pair += 1 if ii == 1 else 0
|
||||
flag_aug = False
|
||||
if phase == 'train' and 3 < label[2] < 30 and s_match > 0.9:
|
||||
flag_aug = True
|
||||
elif phase == 'train' and 3 < label[2] < 30 and cnt_pair_tot % 2 == 0:
|
||||
flag_aug = True
|
||||
|
||||
# Remove height augmentation
|
||||
# flag_aug = False
|
||||
|
||||
if flag_aug:
|
||||
kps_aug, labels_aug = height_augmentation(
|
||||
keypoints[idx:idx+1], keypoints_r[idx_r:idx_r+1], label, s_match,
|
||||
seed=cnt_pair_tot)
|
||||
else:
|
||||
kps_aug = [(keypoints[idx:idx+1], keypoints_r[idx_r:idx_r+1])]
|
||||
labels_aug = [label]
|
||||
|
||||
for i, lab in enumerate(labels_aug):
|
||||
(kps, kps_r) = kps_aug[i]
|
||||
input_l = preprocess_monoloco(kps, kk).view(-1)
|
||||
input_r = preprocess_monoloco(kps_r, kk).view(-1)
|
||||
keypoint = torch.cat((kps, kps_r), dim=2).tolist()
|
||||
inp = torch.cat((input_l, input_l - input_r)).tolist()
|
||||
|
||||
# Only relative distances
|
||||
# inp_x = input[::2]
|
||||
# inp = torch.cat((inp_x, input - input_r)).tolist()
|
||||
|
||||
# lab = normalize_hwl(lab)
|
||||
if ys[idx_gt][10] < 0.5:
|
||||
self.dic_jo[phase]['kps'].append(keypoint)
|
||||
self.dic_jo[phase]['X'].append(inp)
|
||||
self.dic_jo[phase]['Y'].append(lab)
|
||||
self.dic_jo[phase]['names'].append(name) # One image name for each annotation
|
||||
append_cluster(self.dic_jo, phase, inp, lab, keypoint)
|
||||
cnt_tot += 1
|
||||
if s_match > 0.9:
|
||||
cnt_stereo[phase] += 1
|
||||
else:
|
||||
cnt_mono[phase] += 1
|
||||
|
||||
with open(self.path_joints, 'w') as file:
|
||||
json.dump(self.dic_jo, file)
|
||||
with open(os.path.join(self.path_names), 'w') as file:
|
||||
json.dump(self.dic_names, file)
|
||||
|
||||
# cout
|
||||
print(cnt_30)
|
||||
print(cnt_less_30)
|
||||
print('-' * 120)
|
||||
|
||||
print("Number of GT files: {}. Files with at least one pedestrian: {}. Files not found: {}"
|
||||
.format(cnt_files, cnt_files_ped, cnt_fnf))
|
||||
print("Ground truth matches : {:.1f} % for left images (train and val) and {:.1f} % for right images (train)"
|
||||
.format(100*cnt_match_l / (cnt_gt['train'] + cnt_gt['val']), 100*cnt_match_r / cnt_gt['train']))
|
||||
print("Total annotations: {}".format(cnt_tot))
|
||||
print("Total number of cyclists: {}\n".format(cnt_cyclist))
|
||||
print("Ambiguous instances removed: {}".format(cnt_ambiguous))
|
||||
print("Extra pairs created with horizontal flipping: {}\n".format(cnt_extra_pair))
|
||||
|
||||
if not self.monocular:
|
||||
print('Instances with stereo correspondence: {:.1f}% '.format(100 * cnt_pair / cnt_pair_tot))
|
||||
for phase in ['train', 'val']:
|
||||
cnt = cnt_mono[phase] + cnt_stereo[phase]
|
||||
print("{}: annotations: {}. Stereo pairs {:.1f}% "
|
||||
.format(phase.upper(), cnt, 100 * cnt_stereo[phase] / cnt))
|
||||
|
||||
print("\nOutput files:\n{}\n{}".format(self.path_names, self.path_joints))
|
||||
print('-' * 120)
|
||||
|
||||
def prep_activity(self):
|
||||
"""Augment ground-truth with flag activity"""
|
||||
|
||||
from monstereo.activity import social_interactions
|
||||
main_dir = os.path.join('data', 'kitti')
|
||||
dir_gt = os.path.join(main_dir, 'gt')
|
||||
dir_out = os.path.join(main_dir, 'gt_activity')
|
||||
make_new_directory(dir_out)
|
||||
cnt_tp, cnt_tn = 0, 0
|
||||
|
||||
# Extract validation images for evaluation
|
||||
category = 'pedestrian'
|
||||
|
||||
for name in self.set_val:
|
||||
# Read
|
||||
path_gt = os.path.join(dir_gt, name)
|
||||
boxes_gt, ys, truncs_gt, occs_gt, lines = parse_ground_truth(path_gt, category, spherical=False,
|
||||
verbose=True)
|
||||
angles = [y[10] for y in ys]
|
||||
dds = [y[4] for y in ys]
|
||||
xz_centers = [[y[0], y[2]] for y in ys]
|
||||
|
||||
# Write
|
||||
path_out = os.path.join(dir_out, name)
|
||||
with open(path_out, "w+") as ff:
|
||||
for idx, line in enumerate(lines):
|
||||
if social_interactions(idx, xz_centers, angles, dds,
|
||||
n_samples=1,
|
||||
threshold_dist=self.THRESHOLD_DIST,
|
||||
radii=self.RADII,
|
||||
social_distance=self.SOCIAL_DISTANCE):
|
||||
activity = '1'
|
||||
cnt_tp += 1
|
||||
else:
|
||||
activity = '0'
|
||||
cnt_tn += 1
|
||||
|
||||
line_new = line[:-1] + ' ' + activity + line[-1]
|
||||
ff.write(line_new)
|
||||
|
||||
print(f'Written {len(self.set_val)} new files in {dir_out}')
|
||||
print(f'Saved {cnt_tp} positive and {cnt_tn} negative annotations')
|
||||
|
||||
def _factory_phase(self, name):
|
||||
"""Choose the phase"""
|
||||
phase = None
|
||||
flag = False
|
||||
if name in self.set_train:
|
||||
phase = 'train'
|
||||
elif name in self.set_val:
|
||||
phase = 'val'
|
||||
else:
|
||||
flag = True
|
||||
return phase, flag
|
||||
|
||||
|
||||
def crop_and_draw(im, box, keypoint):
|
||||
|
||||
box = [round(el) for el in box[:-1]]
|
||||
center = (int((keypoint[0][0])), int((keypoint[1][0])))
|
||||
radius = round((box[3]-box[1]) / 20)
|
||||
im = cv2.circle(im, center, radius, color=(0, 255, 0), thickness=1)
|
||||
crop = im[box[1]:box[3], box[0]:box[2]]
|
||||
h_crop = crop.shape[0]
|
||||
w_crop = crop.shape[1]
|
||||
|
||||
return crop, h_crop, w_crop
|
||||
284
monstereo/prep/preprocess_nu.py
Normal file
284
monstereo/prep/preprocess_nu.py
Normal file
@ -0,0 +1,284 @@
|
||||
# pylint: disable=too-many-statements, import-error
|
||||
|
||||
|
||||
"""Extract joints annotations and match with nuScenes ground truths
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import math
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
import datetime
|
||||
|
||||
import numpy as np
|
||||
from nuscenes.nuscenes import NuScenes
|
||||
from nuscenes.utils import splits
|
||||
from pyquaternion import Quaternion
|
||||
|
||||
from ..utils import get_iou_matches, append_cluster, select_categories, project_3d, correct_angle, normalize_hwl, \
|
||||
to_spherical
|
||||
from ..network.process import preprocess_pifpaf, preprocess_monoloco
|
||||
|
||||
|
||||
class PreprocessNuscenes:
|
||||
"""Preprocess Nuscenes dataset"""
|
||||
AV_W = 0.68
|
||||
AV_L = 0.75
|
||||
AV_H = 1.72
|
||||
WLH_STD = 0.1
|
||||
social = False
|
||||
|
||||
CAMERAS = ('CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT')
|
||||
dic_jo = {'train': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
||||
clst=defaultdict(lambda: defaultdict(list))),
|
||||
'val': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
||||
clst=defaultdict(lambda: defaultdict(list))),
|
||||
'test': dict(X=[], Y=[], names=[], kps=[], boxes_3d=[], K=[],
|
||||
clst=defaultdict(lambda: defaultdict(list)))
|
||||
}
|
||||
dic_names = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
def __init__(self, dir_ann, dir_nuscenes, dataset, iou_min):
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
self.iou_min = iou_min
|
||||
self.dir_ann = dir_ann
|
||||
dir_out = os.path.join('data', 'arrays')
|
||||
assert os.path.exists(dir_nuscenes), "Nuscenes directory does not exists"
|
||||
assert os.path.exists(self.dir_ann), "The annotations directory does not exists"
|
||||
assert os.path.exists(dir_out), "Joints directory does not exists"
|
||||
|
||||
now = datetime.datetime.now()
|
||||
now_time = now.strftime("%Y%m%d-%H%M")[2:]
|
||||
self.path_joints = os.path.join(dir_out, 'joints-' + dataset + '-' + now_time + '.json')
|
||||
self.path_names = os.path.join(dir_out, 'names-' + dataset + '-' + now_time + '.json')
|
||||
|
||||
self.nusc, self.scenes, self.split_train, self.split_val = factory(dataset, dir_nuscenes)
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
Prepare arrays for training
|
||||
"""
|
||||
cnt_scenes = cnt_samples = cnt_sd = cnt_ann = 0
|
||||
start = time.time()
|
||||
for ii, scene in enumerate(self.scenes):
|
||||
end_scene = time.time()
|
||||
current_token = scene['first_sample_token']
|
||||
cnt_scenes += 1
|
||||
time_left = str((end_scene - start_scene) / 60 * (len(self.scenes) - ii))[:4] if ii != 0 else "NaN"
|
||||
|
||||
sys.stdout.write('\r' + 'Elaborating scene {}, remaining time {} minutes'
|
||||
.format(cnt_scenes, time_left) + '\t\n')
|
||||
start_scene = time.time()
|
||||
if scene['name'] in self.split_train:
|
||||
phase = 'train'
|
||||
elif scene['name'] in self.split_val:
|
||||
phase = 'val'
|
||||
else:
|
||||
print("phase name not in training or validation split")
|
||||
continue
|
||||
|
||||
while not current_token == "":
|
||||
sample_dic = self.nusc.get('sample', current_token)
|
||||
cnt_samples += 1
|
||||
|
||||
# Extract all the sample_data tokens for each sample
|
||||
for cam in self.CAMERAS:
|
||||
sd_token = sample_dic['data'][cam]
|
||||
cnt_sd += 1
|
||||
|
||||
# Extract all the annotations of the person
|
||||
path_im, boxes_obj, kk = self.nusc.get_sample_data(sd_token, box_vis_level=1) # At least one corner
|
||||
boxes_gt, boxes_3d, ys = extract_ground_truth(boxes_obj, kk)
|
||||
kk = kk.tolist()
|
||||
name = os.path.basename(path_im)
|
||||
basename, _ = os.path.splitext(name)
|
||||
|
||||
self.dic_names[basename + '.jpg']['boxes'] = copy.deepcopy(boxes_gt)
|
||||
self.dic_names[basename + '.jpg']['ys'] = copy.deepcopy(ys)
|
||||
self.dic_names[basename + '.jpg']['K'] = copy.deepcopy(kk)
|
||||
|
||||
# Run IoU with pifpaf detections and save
|
||||
path_pif = os.path.join(self.dir_ann, name + '.pifpaf.json')
|
||||
exists = os.path.isfile(path_pif)
|
||||
|
||||
if exists:
|
||||
with open(path_pif, 'r') as file:
|
||||
annotations = json.load(file)
|
||||
boxes, keypoints = preprocess_pifpaf(annotations, im_size=(1600, 900))
|
||||
else:
|
||||
continue
|
||||
|
||||
if keypoints:
|
||||
matches = get_iou_matches(boxes, boxes_gt, self.iou_min)
|
||||
for (idx, idx_gt) in matches:
|
||||
keypoint = keypoints[idx:idx + 1]
|
||||
inp = preprocess_monoloco(keypoint, kk).view(-1).tolist()
|
||||
lab = ys[idx_gt]
|
||||
lab = normalize_hwl(lab)
|
||||
self.dic_jo[phase]['kps'].append(keypoint)
|
||||
self.dic_jo[phase]['X'].append(inp)
|
||||
self.dic_jo[phase]['Y'].append(lab)
|
||||
self.dic_jo[phase]['names'].append(name) # One image name for each annotation
|
||||
self.dic_jo[phase]['boxes_3d'].append(boxes_3d[idx_gt])
|
||||
append_cluster(self.dic_jo, phase, inp, lab, keypoint)
|
||||
cnt_ann += 1
|
||||
sys.stdout.write('\r' + 'Saved annotations {}'.format(cnt_ann) + '\t')
|
||||
|
||||
current_token = sample_dic['next']
|
||||
|
||||
with open(os.path.join(self.path_joints), 'w') as f:
|
||||
json.dump(self.dic_jo, f)
|
||||
with open(os.path.join(self.path_names), 'w') as f:
|
||||
json.dump(self.dic_names, f)
|
||||
end = time.time()
|
||||
|
||||
extract_box_average(self.dic_jo['train']['boxes_3d'])
|
||||
print("\nSaved {} annotations for {} samples in {} scenes. Total time: {:.1f} minutes"
|
||||
.format(cnt_ann, cnt_samples, cnt_scenes, (end-start)/60))
|
||||
print("\nOutput files:\n{}\n{}\n".format(self.path_names, self.path_joints))
|
||||
|
||||
|
||||
def extract_ground_truth(boxes_obj, kk, spherical=True):
|
||||
|
||||
boxes_gt = []
|
||||
boxes_3d = []
|
||||
ys = []
|
||||
|
||||
for box_obj in boxes_obj:
|
||||
|
||||
# Select category
|
||||
if box_obj.name[:6] != 'animal':
|
||||
general_name = box_obj.name.split('.')[0] + '.' + box_obj.name.split('.')[1]
|
||||
else:
|
||||
general_name = 'animal'
|
||||
if general_name in select_categories('all'):
|
||||
|
||||
# Obtain 2D & 3D box
|
||||
boxes_gt.append(project_3d(box_obj, kk))
|
||||
boxes_3d.append(box_obj.center.tolist() + box_obj.wlh.tolist())
|
||||
|
||||
# Angle
|
||||
yaw = quaternion_yaw(box_obj.orientation)
|
||||
assert - math.pi <= yaw <= math.pi
|
||||
sin, cos, _ = correct_angle(yaw, box_obj.center)
|
||||
hwl = [float(box_obj.wlh[i]) for i in (2, 0, 1)]
|
||||
|
||||
# Spherical coordinates
|
||||
xyz = list(box_obj.center)
|
||||
dd = np.linalg.norm(box_obj.center)
|
||||
if spherical:
|
||||
rtp = to_spherical(xyz)
|
||||
loc = rtp[1:3] + xyz[2:3] + rtp[0:1] # [theta, psi, z, r]
|
||||
else:
|
||||
loc = xyz + [dd]
|
||||
|
||||
output = loc + hwl + [sin, cos, yaw]
|
||||
ys.append(output)
|
||||
|
||||
return boxes_gt, boxes_3d, ys
|
||||
|
||||
|
||||
def factory(dataset, dir_nuscenes):
|
||||
"""Define dataset type and split training and validation"""
|
||||
|
||||
assert dataset in ['nuscenes', 'nuscenes_mini', 'nuscenes_teaser']
|
||||
if dataset == 'nuscenes_mini':
|
||||
version = 'v1.0-mini'
|
||||
else:
|
||||
version = 'v1.0-trainval'
|
||||
|
||||
nusc = NuScenes(version=version, dataroot=dir_nuscenes, verbose=True)
|
||||
scenes = nusc.scene
|
||||
|
||||
if dataset == 'nuscenes_teaser':
|
||||
with open("splits/nuscenes_teaser_scenes.txt", "r") as file:
|
||||
teaser_scenes = file.read().splitlines()
|
||||
scenes = [scene for scene in scenes if scene['token'] in teaser_scenes]
|
||||
with open("splits/split_nuscenes_teaser.json", "r") as file:
|
||||
dic_split = json.load(file)
|
||||
split_train = [scene['name'] for scene in scenes if scene['token'] in dic_split['train']]
|
||||
split_val = [scene['name'] for scene in scenes if scene['token'] in dic_split['val']]
|
||||
else:
|
||||
split_scenes = splits.create_splits_scenes()
|
||||
split_train, split_val = split_scenes['train'], split_scenes['val']
|
||||
|
||||
return nusc, scenes, split_train, split_val
|
||||
|
||||
|
||||
def quaternion_yaw(q: Quaternion, in_image_frame: bool = True) -> float:
|
||||
if in_image_frame:
|
||||
v = np.dot(q.rotation_matrix, np.array([1, 0, 0]))
|
||||
yaw = -np.arctan2(v[2], v[0])
|
||||
else:
|
||||
v = np.dot(q.rotation_matrix, np.array([1, 0, 0]))
|
||||
yaw = np.arctan2(v[1], v[0])
|
||||
return float(yaw)
|
||||
|
||||
|
||||
def extract_box_average(boxes_3d):
|
||||
boxes_np = np.array(boxes_3d)
|
||||
means = np.mean(boxes_np[:, 3:], axis=0)
|
||||
stds = np.std(boxes_np[:, 3:], axis=0)
|
||||
print(means)
|
||||
print(stds)
|
||||
|
||||
|
||||
def extract_social(inputs, ys, keypoints, idx, matches):
|
||||
"""Output a (padded) version with all the 5 neighbours
|
||||
- Take the ground feet and the output z
|
||||
- make relative to the person (as social LSTM)"""
|
||||
all_inputs = []
|
||||
|
||||
# Find the lowest relative ground foot
|
||||
ground_foot = np.max(np.array(inputs)[:, [31, 33]], axis=1)
|
||||
rel_ground_foot = ground_foot - ground_foot[idx]
|
||||
rel_ground_foot = rel_ground_foot.tolist()
|
||||
|
||||
# Order the people based on their distance
|
||||
base = np.array([np.mean(np.array(keypoints[idx][0])), np.mean(np.array(keypoints[idx][1]))])
|
||||
# delta_input = [abs((inp[31] + inp[33]) / 2 - base) for inp in inputs]
|
||||
delta_input = [np.linalg.norm(base - np.array([np.mean(np.array(kp[0])), np.mean(np.array(kp[1]))]))
|
||||
for kp in keypoints]
|
||||
sorted_indices = sorted(range(len(delta_input)), key=lambda k: delta_input[k]) # Return a list of sorted indices
|
||||
all_inputs.extend(inputs[idx])
|
||||
|
||||
indices_idx = [idx for (idx, idx_gt) in matches]
|
||||
if len(sorted_indices) > 2:
|
||||
aa = 5
|
||||
for ii in range(1, 3):
|
||||
try:
|
||||
index = sorted_indices[ii]
|
||||
|
||||
# Extract the idx_gt corresponding to the input we are attaching if it exists
|
||||
try:
|
||||
idx_idx_gt = indices_idx.index(index)
|
||||
idx_gt = matches[idx_idx_gt][1]
|
||||
all_inputs.append(rel_ground_foot[index]) # Relative lower ground foot
|
||||
all_inputs.append(float(ys[idx_gt][3])) # Output Z
|
||||
except ValueError:
|
||||
all_inputs.extend([0.] * 2)
|
||||
except IndexError:
|
||||
all_inputs.extend([0.] * 2)
|
||||
assert len(all_inputs) == 34 + 2 * 2
|
||||
return all_inputs
|
||||
|
||||
|
||||
# def get_jean_yaw(box_obj):
|
||||
# b_corners = box_obj.bottom_corners()
|
||||
# center = box_obj.center
|
||||
# back_point = [(b_corners[0, 2] + b_corners[0, 3]) / 2, (b_corners[2, 2] + b_corners[2, 3]) / 2]
|
||||
#
|
||||
# x = b_corners[0, :] - back_point[0]
|
||||
# y = b_corners[2, :] - back_point[1]
|
||||
#
|
||||
# angle = math.atan2((x[0] + x[1]) / 2, (y[0] + y[1]) / 2) * 180 / 3.14
|
||||
# angle = (angle + 360) % 360
|
||||
# correction = math.atan2(center[0], center[2]) * 180 / 3.14
|
||||
# return angle, correction
|
||||
141
monstereo/prep/transforms.py
Normal file
141
monstereo/prep/transforms.py
Normal file
@ -0,0 +1,141 @@
|
||||
|
||||
import math
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
|
||||
BASELINE = 0.54
|
||||
BF = BASELINE * 721
|
||||
|
||||
COCO_KEYPOINTS = [
|
||||
'nose', # 0
|
||||
'left_eye', # 1
|
||||
'right_eye', # 2
|
||||
'left_ear', # 3
|
||||
'right_ear', # 4
|
||||
'left_shoulder', # 5
|
||||
'right_shoulder', # 6
|
||||
'left_elbow', # 7
|
||||
'right_elbow', # 8
|
||||
'left_wrist', # 9
|
||||
'right_wrist', # 10
|
||||
'left_hip', # 11
|
||||
'right_hip', # 12
|
||||
'left_knee', # 13
|
||||
'right_knee', # 14
|
||||
'left_ankle', # 15
|
||||
'right_ankle', # 16
|
||||
]
|
||||
|
||||
HFLIP = {
|
||||
'nose': 'nose',
|
||||
'left_eye': 'right_eye',
|
||||
'right_eye': 'left_eye',
|
||||
'left_ear': 'right_ear',
|
||||
'right_ear': 'left_ear',
|
||||
'left_shoulder': 'right_shoulder',
|
||||
'right_shoulder': 'left_shoulder',
|
||||
'left_elbow': 'right_elbow',
|
||||
'right_elbow': 'left_elbow',
|
||||
'left_wrist': 'right_wrist',
|
||||
'right_wrist': 'left_wrist',
|
||||
'left_hip': 'right_hip',
|
||||
'right_hip': 'left_hip',
|
||||
'left_knee': 'right_knee',
|
||||
'right_knee': 'left_knee',
|
||||
'left_ankle': 'right_ankle',
|
||||
'right_ankle': 'left_ankle',
|
||||
}
|
||||
|
||||
|
||||
def transform_keypoints(keypoints, mode):
|
||||
"""Egocentric horizontal flip"""
|
||||
assert mode == 'flip', "mode not recognized"
|
||||
kps = np.array(keypoints)
|
||||
dic_kps = {key: kps[:, :, idx] for idx, key in enumerate(COCO_KEYPOINTS)}
|
||||
kps_hflip = np.array([dic_kps[value] for key, value in HFLIP.items()])
|
||||
kps_hflip = np.transpose(kps_hflip, (1, 2, 0))
|
||||
return kps_hflip.tolist()
|
||||
|
||||
|
||||
def flip_inputs(keypoints, im_w, mode=None):
|
||||
"""Horizontal flip the keypoints or the boxes in the image"""
|
||||
if mode == 'box':
|
||||
boxes = deepcopy(keypoints)
|
||||
for box in boxes:
|
||||
temp = box[2]
|
||||
box[2] = im_w - box[0]
|
||||
box[0] = im_w - temp
|
||||
return boxes
|
||||
|
||||
keypoints = np.array(keypoints)
|
||||
keypoints[:, 0, :] = im_w - keypoints[:, 0, :] # Shifted
|
||||
kps_flip = transform_keypoints(keypoints, mode='flip')
|
||||
return kps_flip
|
||||
|
||||
|
||||
def flip_labels(boxes_gt, labels, im_w):
|
||||
"""Correct x, d positions and angles after horizontal flipping"""
|
||||
from ..utils import correct_angle, to_cartesian, to_spherical
|
||||
boxes_flip = deepcopy(boxes_gt)
|
||||
labels_flip = deepcopy(labels)
|
||||
|
||||
for idx, label_flip in enumerate(labels_flip):
|
||||
|
||||
# Flip the box and account for disparity
|
||||
disp = BF / label_flip[2]
|
||||
temp = boxes_flip[idx][2]
|
||||
boxes_flip[idx][2] = im_w - boxes_flip[idx][0] + disp
|
||||
boxes_flip[idx][0] = im_w - temp + disp
|
||||
|
||||
# Flip X and D
|
||||
rtp = label_flip[3:4] + label_flip[0:2] # Originally t,p,z,r
|
||||
xyz = to_cartesian(rtp)
|
||||
xyz[0] = -xyz[0] + BASELINE # x
|
||||
rtp_r = to_spherical(xyz)
|
||||
label_flip[3], label_flip[0], label_flip[1] = rtp_r[0], rtp_r[1], rtp_r[2]
|
||||
|
||||
# FLip and correct the angle
|
||||
yaw = label_flip[9]
|
||||
yaw_n = math.copysign(1, yaw) * (np.pi - abs(yaw)) # Horizontal flipping change of angle
|
||||
|
||||
sin, cos, yaw_corr = correct_angle(yaw_n, xyz)
|
||||
label_flip[7], label_flip[8], label_flip[9] = sin, cos, yaw_n
|
||||
|
||||
return boxes_flip, labels_flip
|
||||
|
||||
|
||||
def height_augmentation(kps, kps_r, label, s_match, seed=0):
|
||||
"""
|
||||
label: theta, psi, z, rho, wlh, sin, cos, yaw, cat
|
||||
"""
|
||||
from ..utils import to_cartesian
|
||||
n_labels = 3 if s_match > 0.9 else 1
|
||||
height_min = 1.2
|
||||
height_max = 2
|
||||
av_height = 1.71
|
||||
kps_aug = [[kps.clone(), kps_r.clone()] for _ in range(n_labels+1)]
|
||||
labels_aug = [label.copy() for _ in range(n_labels+1)] # Maintain the original
|
||||
np.random.seed(seed)
|
||||
heights = np.random.uniform(height_min, height_max, n_labels) # 3 samples
|
||||
zzs = heights * label[2] / av_height
|
||||
disp = BF / label[2]
|
||||
|
||||
rtp = label[3:4] + label[0:2] # Originally t,p,z,r
|
||||
xyz = to_cartesian(rtp)
|
||||
|
||||
for i in range(n_labels):
|
||||
|
||||
if zzs[i] < 2:
|
||||
continue
|
||||
# Update keypoints
|
||||
disp_new = BF / zzs[i]
|
||||
delta_disp = disp - disp_new
|
||||
kps_aug[i][1][0, 0, :] = kps_aug[i][1][0, 0, :] + delta_disp
|
||||
|
||||
# Update labels
|
||||
labels_aug[i][2] = zzs[i]
|
||||
xyz[2] = zzs[i]
|
||||
rho = np.linalg.norm(xyz)
|
||||
labels_aug[i][3] = rho
|
||||
|
||||
return kps_aug, labels_aug
|
||||
195
monstereo/run.py
Normal file
195
monstereo/run.py
Normal file
@ -0,0 +1,195 @@
|
||||
# pylint: disable=too-many-branches, too-many-statements
|
||||
|
||||
import argparse
|
||||
|
||||
from openpifpaf.network import nets
|
||||
from openpifpaf import decoder
|
||||
|
||||
|
||||
def cli():
|
||||
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
|
||||
# Subparser definition
|
||||
subparsers = parser.add_subparsers(help='Different parsers for main actions', dest='command')
|
||||
predict_parser = subparsers.add_parser("predict")
|
||||
prep_parser = subparsers.add_parser("prep")
|
||||
training_parser = subparsers.add_parser("train")
|
||||
eval_parser = subparsers.add_parser("eval")
|
||||
|
||||
# Preprocess input data
|
||||
prep_parser.add_argument('--dir_ann', help='directory of annotations of 2d joints', required=True)
|
||||
prep_parser.add_argument('--dataset',
|
||||
help='datasets to preprocess: nuscenes, nuscenes_teaser, nuscenes_mini, kitti',
|
||||
default='kitti')
|
||||
prep_parser.add_argument('--dir_nuscenes', help='directory of nuscenes devkit', default='data/nuscenes/')
|
||||
prep_parser.add_argument('--iou_min', help='minimum iou to match ground truth', type=float, default=0.3)
|
||||
prep_parser.add_argument('--variance', help='new', action='store_true')
|
||||
prep_parser.add_argument('--activity', help='new', action='store_true')
|
||||
prep_parser.add_argument('--monocular', help='new', action='store_true')
|
||||
|
||||
# Predict (2D pose and/or 3D location from images)
|
||||
# General
|
||||
predict_parser.add_argument('--mode', help='pifpaf, mono, stereo', default='stereo')
|
||||
predict_parser.add_argument('images', nargs='*', help='input images')
|
||||
predict_parser.add_argument('--glob', help='glob expression for input images (for many images)')
|
||||
predict_parser.add_argument('-o', '--output-directory', help='Output directory')
|
||||
predict_parser.add_argument('--output_types', nargs='+', default=['json'],
|
||||
help='what to output: json keypoints skeleton for Pifpaf'
|
||||
'json bird front combined for Monoloco')
|
||||
predict_parser.add_argument('--show', help='to show images', action='store_true')
|
||||
|
||||
# Pifpaf
|
||||
nets.cli(predict_parser)
|
||||
decoder.cli(predict_parser, force_complete_pose=True, instance_threshold=0.15)
|
||||
predict_parser.add_argument('--scale', default=1.0, type=float, help='change the scale of the image to preprocess')
|
||||
|
||||
# Monoloco
|
||||
predict_parser.add_argument('--model', help='path of MonoLoco model to load', required=True)
|
||||
predict_parser.add_argument('--hidden_size', type=int, help='Number of hidden units in the model', default=512)
|
||||
predict_parser.add_argument('--path_gt', help='path of json file with gt 3d localization',
|
||||
default='data/arrays/names-kitti-200615-1022.json')
|
||||
predict_parser.add_argument('--transform', help='transformation for the pose', default='None')
|
||||
predict_parser.add_argument('--draw_box', help='to draw box in the images', action='store_true')
|
||||
predict_parser.add_argument('--z_max', type=int, help='maximum meters distance for predictions', default=22)
|
||||
predict_parser.add_argument('--n_dropout', type=int, help='Epistemic uncertainty evaluation', default=0)
|
||||
predict_parser.add_argument('--dropout', type=float, help='dropout parameter', default=0.2)
|
||||
predict_parser.add_argument('--show_all', help='only predict ground-truth matches or all', action='store_true')
|
||||
|
||||
# Social distancing and social interactions
|
||||
predict_parser.add_argument('--social', help='social', action='store_true')
|
||||
predict_parser.add_argument('--activity', help='activity', action='store_true')
|
||||
predict_parser.add_argument('--json_dir', help='for social')
|
||||
predict_parser.add_argument('--threshold_prob', type=float, help='concordance for samples', default=0.25)
|
||||
predict_parser.add_argument('--threshold_dist', type=float, help='min distance of people', default=2)
|
||||
predict_parser.add_argument('--margin', type=float, help='conservative for noise in orientation', default=1.5)
|
||||
predict_parser.add_argument('--radii', type=tuple, help='o-space radii', default=(0.25, 1, 2))
|
||||
|
||||
# Training
|
||||
training_parser.add_argument('--joints', help='Json file with input joints',
|
||||
default='data/arrays/joints-nuscenes_teaser-190513-1846.json')
|
||||
training_parser.add_argument('--save', help='whether to not save model and log file', action='store_true')
|
||||
training_parser.add_argument('-e', '--epochs', type=int, help='number of epochs to train for', default=500)
|
||||
training_parser.add_argument('--bs', type=int, default=512, help='input batch size')
|
||||
training_parser.add_argument('--monocular', help='whether to train monoloco', action='store_true')
|
||||
training_parser.add_argument('--dropout', type=float, help='dropout. Default no dropout', default=0.2)
|
||||
training_parser.add_argument('--lr', type=float, help='learning rate', default=0.001)
|
||||
training_parser.add_argument('--sched_step', type=float, help='scheduler step time (epochs)', default=30)
|
||||
training_parser.add_argument('--sched_gamma', type=float, help='Scheduler multiplication every step', default=0.98)
|
||||
training_parser.add_argument('--hidden_size', type=int, help='Number of hidden units in the model', default=1024)
|
||||
training_parser.add_argument('--n_stage', type=int, help='Number of stages in the model', default=3)
|
||||
training_parser.add_argument('--hyp', help='run hyperparameters tuning', action='store_true')
|
||||
training_parser.add_argument('--multiplier', type=int, help='Size of the grid of hyp search', default=1)
|
||||
training_parser.add_argument('--r_seed', type=int, help='specify the seed for training and hyp tuning', default=1)
|
||||
training_parser.add_argument('--activity', help='new', action='store_true')
|
||||
|
||||
# Evaluation
|
||||
eval_parser.add_argument('--dataset', help='datasets to evaluate, kitti or nuscenes', default='kitti')
|
||||
eval_parser.add_argument('--geometric', help='to evaluate geometric distance', action='store_true')
|
||||
eval_parser.add_argument('--generate', help='create txt files for KITTI evaluation', action='store_true')
|
||||
eval_parser.add_argument('--dir_ann', help='directory of annotations of 2d joints (for KITTI evaluation)')
|
||||
eval_parser.add_argument('--model', help='path of MonoLoco model to load')
|
||||
eval_parser.add_argument('--joints', help='Json file with input joints to evaluate (for nuScenes evaluation)')
|
||||
eval_parser.add_argument('--n_dropout', type=int, help='Epistemic uncertainty evaluation', default=0)
|
||||
eval_parser.add_argument('--dropout', type=float, help='dropout. Default no dropout', default=0.2)
|
||||
eval_parser.add_argument('--hidden_size', type=int, help='Number of hidden units in the model', default=1024)
|
||||
eval_parser.add_argument('--n_stage', type=int, help='Number of stages in the model', default=3)
|
||||
eval_parser.add_argument('--show', help='whether to show statistic graphs', action='store_true')
|
||||
eval_parser.add_argument('--save', help='whether to save statistic graphs', action='store_true')
|
||||
eval_parser.add_argument('--verbose', help='verbosity of statistics', action='store_true')
|
||||
eval_parser.add_argument('--monocular', help='whether to train using the baseline', action='store_true')
|
||||
eval_parser.add_argument('--new', help='new', action='store_true')
|
||||
eval_parser.add_argument('--variance', help='evaluate keypoints variance', action='store_true')
|
||||
eval_parser.add_argument('--activity', help='evaluate activities', action='store_true')
|
||||
eval_parser.add_argument('--net', help='Choose network: monoloco, monoloco_p, monoloco_pp, monstereo')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = cli()
|
||||
if args.command == 'predict':
|
||||
if args.activity:
|
||||
from .activity import predict
|
||||
else:
|
||||
from .predict import predict
|
||||
predict(args)
|
||||
|
||||
elif args.command == 'prep':
|
||||
|
||||
if 'nuscenes' in args.dataset:
|
||||
from .prep.preprocess_nu import PreprocessNuscenes
|
||||
prep = PreprocessNuscenes(args.dir_ann, args.dir_nuscenes, args.dataset, args.iou_min)
|
||||
prep.run()
|
||||
else:
|
||||
from .prep.prep_kitti import PreprocessKitti
|
||||
prep = PreprocessKitti(args.dir_ann, args.iou_min, args.monocular)
|
||||
if args.activity:
|
||||
prep.prep_activity()
|
||||
else:
|
||||
prep.run()
|
||||
|
||||
elif args.command == 'train':
|
||||
from .train import HypTuning
|
||||
if args.hyp:
|
||||
hyp_tuning = HypTuning(joints=args.joints, epochs=args.epochs,
|
||||
monocular=args.monocular, dropout=args.dropout,
|
||||
multiplier=args.multiplier, r_seed=args.r_seed)
|
||||
hyp_tuning.train()
|
||||
else:
|
||||
|
||||
from .train import Trainer
|
||||
training = Trainer(joints=args.joints, epochs=args.epochs, bs=args.bs,
|
||||
monocular=args.monocular, dropout=args.dropout, lr=args.lr, sched_step=args.sched_step,
|
||||
n_stage=args.n_stage, sched_gamma=args.sched_gamma, hidden_size=args.hidden_size,
|
||||
r_seed=args.r_seed, save=args.save)
|
||||
|
||||
_ = training.train()
|
||||
_ = training.evaluate()
|
||||
|
||||
elif args.command == 'eval':
|
||||
|
||||
if args.activity:
|
||||
from .eval.eval_activity import ActivityEvaluator
|
||||
evaluator = ActivityEvaluator(args)
|
||||
if 'collective' in args.dataset:
|
||||
evaluator.eval_collective()
|
||||
else:
|
||||
evaluator.eval_kitti()
|
||||
|
||||
elif args.geometric:
|
||||
assert args.joints, "joints argument not provided"
|
||||
from .network.geom_baseline import geometric_baseline
|
||||
geometric_baseline(args.joints)
|
||||
|
||||
elif args.variance:
|
||||
from .eval.eval_variance import joints_variance
|
||||
joints_variance(args.joints, clusters=None, dic_ms=None)
|
||||
|
||||
else:
|
||||
if args.generate:
|
||||
from .eval.generate_kitti import GenerateKitti
|
||||
kitti_txt = GenerateKitti(args.model, args.dir_ann, p_dropout=args.dropout, n_dropout=args.n_dropout,
|
||||
hidden_size=args.hidden_size)
|
||||
kitti_txt.run()
|
||||
|
||||
if args.dataset == 'kitti':
|
||||
from .eval import EvalKitti
|
||||
kitti_eval = EvalKitti(verbose=args.verbose)
|
||||
kitti_eval.run()
|
||||
kitti_eval.printer(show=args.show, save=args.save)
|
||||
|
||||
elif 'nuscenes' in args.dataset:
|
||||
from .train import Trainer
|
||||
training = Trainer(joints=args.joints, hidden_size=args.hidden_size)
|
||||
_ = training.evaluate(load=True, model=args.model, debug=False)
|
||||
|
||||
else:
|
||||
raise ValueError("Option not recognized")
|
||||
|
||||
else:
|
||||
raise ValueError("Main subparser not recognized or not provided")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
3
monstereo/train/__init__.py
Normal file
3
monstereo/train/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
|
||||
from .hyp_tuning import HypTuning
|
||||
from .trainer import Trainer
|
||||
92
monstereo/train/datasets.py
Normal file
92
monstereo/train/datasets.py
Normal file
@ -0,0 +1,92 @@
|
||||
|
||||
import json
|
||||
import torch
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
|
||||
class ActivityDataset(Dataset):
|
||||
"""
|
||||
Dataloader for activity dataset
|
||||
"""
|
||||
|
||||
def __init__(self, joints, phase):
|
||||
"""
|
||||
Load inputs and outputs from the pickles files from gt joints, mask joints or both
|
||||
"""
|
||||
assert(phase in ['train', 'val', 'test'])
|
||||
|
||||
with open(joints, 'r') as f:
|
||||
dic_jo = json.load(f)
|
||||
|
||||
# Define input and output for normal training and inference
|
||||
self.inputs_all = torch.tensor(dic_jo[phase]['X'])
|
||||
self.outputs_all = torch.tensor(dic_jo[phase]['Y']).view(-1, 1)
|
||||
# self.kps_all = torch.tensor(dic_jo[phase]['kps'])
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
:return: number of samples (m)
|
||||
"""
|
||||
return self.inputs_all.shape[0]
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""
|
||||
Reading the tensors when required. E.g. Retrieving one element or one batch at a time
|
||||
:param idx: corresponding to m
|
||||
"""
|
||||
inputs = self.inputs_all[idx, :]
|
||||
outputs = self.outputs_all[idx]
|
||||
# kps = self.kps_all[idx, :]
|
||||
return inputs, outputs
|
||||
|
||||
|
||||
class KeypointsDataset(Dataset):
|
||||
"""
|
||||
Dataloader fro nuscenes or kitti datasets
|
||||
"""
|
||||
|
||||
def __init__(self, joints, phase):
|
||||
"""
|
||||
Load inputs and outputs from the pickles files from gt joints, mask joints or both
|
||||
"""
|
||||
assert(phase in ['train', 'val', 'test'])
|
||||
|
||||
with open(joints, 'r') as f:
|
||||
dic_jo = json.load(f)
|
||||
|
||||
# Define input and output for normal training and inference
|
||||
self.inputs_all = torch.tensor(dic_jo[phase]['X'])
|
||||
self.outputs_all = torch.tensor(dic_jo[phase]['Y'])
|
||||
self.names_all = dic_jo[phase]['names']
|
||||
self.kps_all = torch.tensor(dic_jo[phase]['kps'])
|
||||
|
||||
# Extract annotations divided in clusters
|
||||
self.dic_clst = dic_jo[phase]['clst']
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
:return: number of samples (m)
|
||||
"""
|
||||
return self.inputs_all.shape[0]
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""
|
||||
Reading the tensors when required. E.g. Retrieving one element or one batch at a time
|
||||
:param idx: corresponding to m
|
||||
"""
|
||||
inputs = self.inputs_all[idx, :]
|
||||
outputs = self.outputs_all[idx]
|
||||
names = self.names_all[idx]
|
||||
kps = self.kps_all[idx, :]
|
||||
|
||||
return inputs, outputs, names, kps
|
||||
|
||||
def get_cluster_annotations(self, clst):
|
||||
"""Return normalized annotations corresponding to a certain cluster
|
||||
"""
|
||||
inputs = torch.tensor(self.dic_clst[clst]['X'])
|
||||
outputs = torch.tensor(self.dic_clst[clst]['Y']).float()
|
||||
count = len(self.dic_clst[clst]['Y'])
|
||||
|
||||
return inputs, outputs, count
|
||||
129
monstereo/train/hyp_tuning.py
Normal file
129
monstereo/train/hyp_tuning.py
Normal file
@ -0,0 +1,129 @@
|
||||
|
||||
import math
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import logging
|
||||
import random
|
||||
import datetime
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from .trainer import Trainer
|
||||
|
||||
|
||||
class HypTuning:
|
||||
|
||||
def __init__(self, joints, epochs, monocular, dropout, multiplier=1, r_seed=1):
|
||||
"""
|
||||
Initialize directories, load the data and parameters for the training
|
||||
"""
|
||||
|
||||
# Initialize Directories
|
||||
self.joints = joints
|
||||
self.monocular = monocular
|
||||
self.dropout = dropout
|
||||
self.num_epochs = epochs
|
||||
self.r_seed = r_seed
|
||||
dir_out = os.path.join('data', 'models')
|
||||
dir_logs = os.path.join('data', 'logs')
|
||||
assert os.path.exists(dir_out), "Output directory not found"
|
||||
if not os.path.exists(dir_logs):
|
||||
os.makedirs(dir_logs)
|
||||
|
||||
name_out = 'hyp-monoloco-' if monocular else 'hyp-ms-'
|
||||
|
||||
self.path_log = os.path.join(dir_logs, name_out)
|
||||
self.path_model = os.path.join(dir_out, name_out)
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# Initialize grid of parameters
|
||||
random.seed(r_seed)
|
||||
np.random.seed(r_seed)
|
||||
self.sched_gamma_list = [0.8, 0.9, 1, 0.8, 0.9, 1] * multiplier
|
||||
random.shuffle(self.sched_gamma_list)
|
||||
self.sched_step = [10, 20, 40, 60, 80, 100] * multiplier
|
||||
random.shuffle(self.sched_step)
|
||||
self.bs_list = [64, 128, 256, 512, 512, 1024] * multiplier
|
||||
random.shuffle(self.bs_list)
|
||||
self.hidden_list = [512, 1024, 2048, 512, 1024, 2048] * multiplier
|
||||
random.shuffle(self.hidden_list)
|
||||
self.n_stage_list = [3, 3, 3, 3, 3, 3] * multiplier
|
||||
random.shuffle(self.n_stage_list)
|
||||
# Learning rate
|
||||
aa = math.log(0.0005, 10)
|
||||
bb = math.log(0.01, 10)
|
||||
log_lr_list = np.random.uniform(aa, bb, int(6 * multiplier)).tolist()
|
||||
self.lr_list = [10 ** xx for xx in log_lr_list]
|
||||
# plt.hist(self.lr_list, bins=50)
|
||||
# plt.show()
|
||||
|
||||
def train(self):
|
||||
"""Train multiple times using log-space random search"""
|
||||
|
||||
best_acc_val = 20
|
||||
dic_best = {}
|
||||
dic_err_best = {}
|
||||
start = time.time()
|
||||
cnt = 0
|
||||
for idx, lr in enumerate(self.lr_list):
|
||||
bs = self.bs_list[idx]
|
||||
sched_gamma = self.sched_gamma_list[idx]
|
||||
sched_step = self.sched_step[idx]
|
||||
hidden_size = self.hidden_list[idx]
|
||||
n_stage = self.n_stage_list[idx]
|
||||
|
||||
training = Trainer(joints=self.joints, epochs=self.num_epochs,
|
||||
bs=bs, monocular=self.monocular, dropout=self.dropout, lr=lr, sched_step=sched_step,
|
||||
sched_gamma=sched_gamma, hidden_size=hidden_size, n_stage=n_stage,
|
||||
save=False, print_loss=False, r_seed=self.r_seed)
|
||||
|
||||
best_epoch = training.train()
|
||||
dic_err, model = training.evaluate()
|
||||
acc_val = dic_err['val']['all']['mean']
|
||||
cnt += 1
|
||||
print("Combination number: {}".format(cnt))
|
||||
|
||||
if acc_val < best_acc_val:
|
||||
dic_best['lr'] = lr
|
||||
dic_best['joints'] = self.joints
|
||||
dic_best['bs'] = bs
|
||||
dic_best['monocular'] = self.monocular
|
||||
dic_best['sched_gamma'] = sched_gamma
|
||||
dic_best['sched_step'] = sched_step
|
||||
dic_best['hidden_size'] = hidden_size
|
||||
dic_best['n_stage'] = n_stage
|
||||
dic_best['acc_val'] = dic_err['val']['all']['d']
|
||||
dic_best['best_epoch'] = best_epoch
|
||||
dic_best['random_seed'] = self.r_seed
|
||||
# dic_best['acc_test'] = dic_err['test']['all']['mean']
|
||||
|
||||
dic_err_best = dic_err
|
||||
best_acc_val = acc_val
|
||||
model_best = model
|
||||
|
||||
# Save model and log
|
||||
now = datetime.datetime.now()
|
||||
now_time = now.strftime("%Y%m%d-%H%M")[2:]
|
||||
self.path_model = self.path_model + now_time + '.pkl'
|
||||
torch.save(model_best.state_dict(), self.path_model)
|
||||
with open(self.path_log + now_time, 'w') as f:
|
||||
json.dump(dic_best, f)
|
||||
end = time.time()
|
||||
print('\n\n\n')
|
||||
self.logger.info(" Tried {} combinations".format(cnt))
|
||||
self.logger.info(" Total time for hyperparameters search: {:.2f} minutes".format((end - start) / 60))
|
||||
self.logger.info(" Best hyperparameters are:")
|
||||
for key, value in dic_best.items():
|
||||
self.logger.info(" {}: {}".format(key, value))
|
||||
|
||||
print()
|
||||
self.logger.info("Accuracy in each cluster:")
|
||||
|
||||
for key in ('10', '20', '30', '>30', 'all'):
|
||||
self.logger.info("Val: error in cluster {} = {} ".format(key, dic_err_best['val'][key]['d']))
|
||||
self.logger.info("Final accuracy Val: {:.2f}".format(dic_best['acc_val']))
|
||||
self.logger.info("\nSaved the model: {}".format(self.path_model))
|
||||
196
monstereo/train/losses.py
Normal file
196
monstereo/train/losses.py
Normal file
@ -0,0 +1,196 @@
|
||||
"""Inspired by Openpifpaf"""
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from ..network import extract_labels, extract_labels_aux, extract_outputs
|
||||
|
||||
|
||||
class AutoTuneMultiTaskLoss(torch.nn.Module):
|
||||
def __init__(self, losses_tr, losses_val, lambdas, tasks):
|
||||
super().__init__()
|
||||
|
||||
assert all(l in (0.0, 1.0) for l in lambdas)
|
||||
self.losses = torch.nn.ModuleList(losses_tr)
|
||||
self.losses_val = losses_val
|
||||
self.lambdas = lambdas
|
||||
self.tasks = tasks
|
||||
self.log_sigmas = torch.nn.Parameter(torch.zeros((len(lambdas),), dtype=torch.float32), requires_grad=True)
|
||||
|
||||
def forward(self, outputs, labels, phase='train'):
|
||||
|
||||
assert phase in ('train', 'val')
|
||||
out = extract_outputs(outputs, tasks=self.tasks)
|
||||
gt_out = extract_labels(labels, tasks=self.tasks)
|
||||
loss_values = [lam * l(o, g) / (2.0 * (log_sigma.exp() ** 2))
|
||||
for lam, log_sigma, l, o, g in zip(self.lambdas, self.log_sigmas, self.losses, out, gt_out)]
|
||||
|
||||
auto_reg = [log_sigma for log_sigma in self.log_sigmas]
|
||||
|
||||
loss = sum(loss_values) + sum(auto_reg)
|
||||
if phase == 'val':
|
||||
loss_values_val = [l(o, g) for l, o, g in zip(self.losses_val, out, gt_out)]
|
||||
loss_values_val.extend([s.exp() for s in self.log_sigmas])
|
||||
return loss, loss_values_val
|
||||
return loss, loss_values
|
||||
|
||||
|
||||
class MultiTaskLoss(torch.nn.Module):
|
||||
def __init__(self, losses_tr, losses_val, lambdas, tasks):
|
||||
super().__init__()
|
||||
|
||||
self.losses = torch.nn.ModuleList(losses_tr)
|
||||
self.losses_val = losses_val
|
||||
self.lambdas = lambdas
|
||||
self.tasks = tasks
|
||||
if len(self.tasks) == 1 and self.tasks[0] == 'aux':
|
||||
self.flag_aux = True
|
||||
else:
|
||||
self.flag_aux = False
|
||||
|
||||
def forward(self, outputs, labels, phase='train'):
|
||||
|
||||
assert phase in ('train', 'val')
|
||||
out = extract_outputs(outputs, tasks=self.tasks)
|
||||
if self.flag_aux:
|
||||
gt_out = extract_labels_aux(labels, tasks=self.tasks)
|
||||
else:
|
||||
gt_out = extract_labels(labels, tasks=self.tasks)
|
||||
loss_values = [lam * l(o, g) for lam, l, o, g in zip(self.lambdas, self.losses, out, gt_out)]
|
||||
loss = sum(loss_values)
|
||||
|
||||
if phase == 'val':
|
||||
loss_values_val = [l(o, g) for l, o, g in zip(self.losses_val, out, gt_out)]
|
||||
return loss, loss_values_val
|
||||
return loss, loss_values
|
||||
|
||||
|
||||
class CompositeLoss(torch.nn.Module):
|
||||
|
||||
def __init__(self, tasks):
|
||||
super(CompositeLoss, self).__init__()
|
||||
|
||||
self.tasks = tasks
|
||||
self.multi_loss_tr = {task: (LaplacianLoss() if task == 'd'
|
||||
else (nn.BCEWithLogitsLoss() if task in ('aux', )
|
||||
else nn.L1Loss())) for task in tasks}
|
||||
|
||||
self.multi_loss_val = {}
|
||||
for task in tasks:
|
||||
if task == 'd':
|
||||
loss = l1_loss_from_laplace
|
||||
elif task == 'ori':
|
||||
loss = angle_loss
|
||||
elif task in ('aux', ):
|
||||
loss = nn.BCEWithLogitsLoss()
|
||||
else:
|
||||
loss = nn.L1Loss()
|
||||
self.multi_loss_val[task] = loss
|
||||
|
||||
def forward(self):
|
||||
losses_tr = [self.multi_loss_tr[l] for l in self.tasks]
|
||||
losses_val = [self.multi_loss_val[l] for l in self.tasks]
|
||||
return losses_tr, losses_val
|
||||
|
||||
|
||||
class LaplacianLoss(torch.nn.Module):
|
||||
"""1D Gaussian with std depending on the absolute distance"""
|
||||
def __init__(self, size_average=True, reduce=True, evaluate=False):
|
||||
super(LaplacianLoss, self).__init__()
|
||||
self.size_average = size_average
|
||||
self.reduce = reduce
|
||||
self.evaluate = evaluate
|
||||
|
||||
def laplacian_1d(self, mu_si, xx):
|
||||
"""
|
||||
1D Gaussian Loss. f(x | mu, sigma). The network outputs mu and sigma. X is the ground truth distance.
|
||||
This supports backward().
|
||||
Inspired by
|
||||
https://github.com/naba89/RNN-Handwriting-Generation-Pytorch/blob/master/loss_functions.py
|
||||
|
||||
"""
|
||||
eps = 0.01 # To avoid 0/0 when no uncertainty
|
||||
mu, si = mu_si[:, 0:1], mu_si[:, 1:2]
|
||||
norm = 1 - mu / xx # Relative
|
||||
const = 2
|
||||
|
||||
term_a = torch.abs(norm) * torch.exp(-si) + eps
|
||||
term_b = si
|
||||
norm_bi = (np.mean(np.abs(norm.cpu().detach().numpy())), np.mean(torch.exp(si).cpu().detach().numpy()))
|
||||
|
||||
if self.evaluate:
|
||||
return norm_bi
|
||||
return term_a + term_b + const
|
||||
|
||||
def forward(self, outputs, targets):
|
||||
|
||||
values = self.laplacian_1d(outputs, targets)
|
||||
|
||||
if not self.reduce or self.evaluate:
|
||||
return values
|
||||
if self.size_average:
|
||||
mean_values = torch.mean(values)
|
||||
return mean_values
|
||||
return torch.sum(values)
|
||||
|
||||
|
||||
class GaussianLoss(torch.nn.Module):
|
||||
"""1D Gaussian with std depending on the absolute distance
|
||||
"""
|
||||
def __init__(self, device, size_average=True, reduce=True, evaluate=False):
|
||||
super(GaussianLoss, self).__init__()
|
||||
self.size_average = size_average
|
||||
self.reduce = reduce
|
||||
self.evaluate = evaluate
|
||||
self.device = device
|
||||
|
||||
def gaussian_1d(self, mu_si, xx):
|
||||
"""
|
||||
1D Gaussian Loss. f(x | mu, sigma). The network outputs mu and sigma. X is the ground truth distance.
|
||||
This supports backward().
|
||||
Inspired by
|
||||
https://github.com/naba89/RNN-Handwriting-Generation-Pytorch/blob/master/loss_functions.py
|
||||
"""
|
||||
mu, si = mu_si[:, 0:1], mu_si[:, 1:2]
|
||||
|
||||
min_si = torch.ones(si.size()).cuda(self.device) * 0.1
|
||||
si = torch.max(min_si, si)
|
||||
norm = xx - mu
|
||||
term_a = (norm / si)**2 / 2
|
||||
term_b = torch.log(si * math.sqrt(2 * math.pi))
|
||||
|
||||
norm_si = (np.mean(np.abs(norm.cpu().detach().numpy())), np.mean(si.cpu().detach().numpy()))
|
||||
|
||||
if self.evaluate:
|
||||
return norm_si
|
||||
|
||||
return term_a + term_b
|
||||
|
||||
def forward(self, outputs, targets):
|
||||
|
||||
values = self.gaussian_1d(outputs, targets)
|
||||
|
||||
if not self.reduce or self.evaluate:
|
||||
return values
|
||||
if self.size_average:
|
||||
mean_values = torch.mean(values)
|
||||
return mean_values
|
||||
return torch.sum(values)
|
||||
|
||||
|
||||
def angle_loss(orient, gt_orient):
|
||||
"""Only for evaluation"""
|
||||
angles = torch.atan2(orient[:, 0], orient[:, 1])
|
||||
gt_angles = torch.atan2(gt_orient[:, 0], gt_orient[:, 1])
|
||||
# assert all(angles < math.pi) & all(angles > - math.pi)
|
||||
# assert all(gt_angles < math.pi) & all(gt_angles > - math.pi)
|
||||
loss = torch.mean(torch.abs(angles - gt_angles)) * 180 / 3.14
|
||||
return loss
|
||||
|
||||
|
||||
def l1_loss_from_laplace(out, gt_out):
|
||||
"""Only for evaluation"""
|
||||
loss = torch.mean(torch.abs(out[:, 0:1] - gt_out))
|
||||
return loss
|
||||
364
monstereo/train/trainer.py
Normal file
364
monstereo/train/trainer.py
Normal file
@ -0,0 +1,364 @@
|
||||
# pylint: disable=too-many-statements
|
||||
|
||||
"""
|
||||
Training and evaluation of a neural network which predicts 3D localization and confidence intervals
|
||||
given 2d joints
|
||||
"""
|
||||
|
||||
import copy
|
||||
import os
|
||||
import datetime
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from itertools import chain
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.optim import lr_scheduler
|
||||
|
||||
from .datasets import KeypointsDataset
|
||||
from .losses import CompositeLoss, MultiTaskLoss, AutoTuneMultiTaskLoss
|
||||
from ..network import extract_outputs, extract_labels
|
||||
from ..network.architectures import SimpleModel
|
||||
from ..utils import set_logger
|
||||
|
||||
|
||||
class Trainer:
|
||||
# Constants
|
||||
VAL_BS = 10000
|
||||
|
||||
tasks = ('d', 'x', 'y', 'h', 'w', 'l', 'ori', 'aux')
|
||||
val_task = 'd'
|
||||
lambdas = (1, 1, 1, 1, 1, 1, 1, 1)
|
||||
|
||||
def __init__(self, joints, epochs=100, bs=256, dropout=0.2, lr=0.002,
|
||||
sched_step=20, sched_gamma=1, hidden_size=256, n_stage=3, r_seed=1, n_samples=100,
|
||||
monocular=False, save=False, print_loss=True):
|
||||
"""
|
||||
Initialize directories, load the data and parameters for the training
|
||||
"""
|
||||
|
||||
# Initialize directories and parameters
|
||||
dir_out = os.path.join('data', 'models')
|
||||
if not os.path.exists(dir_out):
|
||||
warnings.warn("Warning: output directory not found, the model will not be saved")
|
||||
dir_logs = os.path.join('data', 'logs')
|
||||
if not os.path.exists(dir_logs):
|
||||
warnings.warn("Warning: default logs directory not found")
|
||||
assert os.path.exists(joints), "Input file not found"
|
||||
|
||||
self.joints = joints
|
||||
self.num_epochs = epochs
|
||||
self.save = save
|
||||
self.print_loss = print_loss
|
||||
self.monocular = monocular
|
||||
self.lr = lr
|
||||
self.sched_step = sched_step
|
||||
self.sched_gamma = sched_gamma
|
||||
self.clusters = ['10', '20', '30', '50', '>50']
|
||||
self.hidden_size = hidden_size
|
||||
self.n_stage = n_stage
|
||||
self.dir_out = dir_out
|
||||
self.n_samples = n_samples
|
||||
self.r_seed = r_seed
|
||||
self.auto_tune_mtl = False
|
||||
|
||||
# Select the device
|
||||
use_cuda = torch.cuda.is_available()
|
||||
self.device = torch.device("cuda" if use_cuda else "cpu")
|
||||
print('Device: ', self.device)
|
||||
torch.manual_seed(r_seed)
|
||||
if use_cuda:
|
||||
torch.cuda.manual_seed(r_seed)
|
||||
|
||||
# Remove auxiliary task if monocular
|
||||
if self.monocular and self.tasks[-1] == 'aux':
|
||||
self.tasks = self.tasks[:-1]
|
||||
self.lambdas = self.lambdas[:-1]
|
||||
|
||||
losses_tr, losses_val = CompositeLoss(self.tasks)()
|
||||
|
||||
if self.auto_tune_mtl:
|
||||
self.mt_loss = AutoTuneMultiTaskLoss(losses_tr, losses_val, self.lambdas, self.tasks)
|
||||
else:
|
||||
self.mt_loss = MultiTaskLoss(losses_tr, losses_val, self.lambdas, self.tasks)
|
||||
self.mt_loss.to(self.device)
|
||||
|
||||
if not self.monocular:
|
||||
input_size = 68
|
||||
output_size = 10
|
||||
else:
|
||||
input_size = 34
|
||||
output_size = 9
|
||||
|
||||
now = datetime.datetime.now()
|
||||
now_time = now.strftime("%Y%m%d-%H%M")[2:]
|
||||
name_out = 'ms-' + now_time
|
||||
if self.save:
|
||||
self.path_model = os.path.join(dir_out, name_out + '.pkl')
|
||||
self.logger = set_logger(os.path.join(dir_logs, name_out))
|
||||
self.logger.info("Training arguments: \nepochs: {} \nbatch_size: {} \ndropout: {}"
|
||||
"\nmonocular: {} \nlearning rate: {} \nscheduler step: {} \nscheduler gamma: {} "
|
||||
"\ninput_size: {} \noutput_size: {}\nhidden_size: {} \nn_stages: {} "
|
||||
"\nr_seed: {} \nlambdas: {} \ninput_file: {}"
|
||||
.format(epochs, bs, dropout, self.monocular, lr, sched_step, sched_gamma, input_size,
|
||||
output_size, hidden_size, n_stage, r_seed, self.lambdas, self.joints))
|
||||
else:
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# Dataloader
|
||||
self.dataloaders = {phase: DataLoader(KeypointsDataset(self.joints, phase=phase),
|
||||
batch_size=bs, shuffle=True) for phase in ['train', 'val']}
|
||||
|
||||
self.dataset_sizes = {phase: len(KeypointsDataset(self.joints, phase=phase))
|
||||
for phase in ['train', 'val']}
|
||||
|
||||
# Define the model
|
||||
self.logger.info('Sizes of the dataset: {}'.format(self.dataset_sizes))
|
||||
print(">>> creating model")
|
||||
|
||||
self.model = SimpleModel(input_size=input_size, output_size=output_size, linear_size=hidden_size,
|
||||
p_dropout=dropout, num_stage=self.n_stage, device=self.device)
|
||||
self.model.to(self.device)
|
||||
print(">>> model params: {:.3f}M".format(sum(p.numel() for p in self.model.parameters()) / 1000000.0))
|
||||
print(">>> loss params: {}".format(sum(p.numel() for p in self.mt_loss.parameters())))
|
||||
|
||||
# Optimizer and scheduler
|
||||
all_params = chain(self.model.parameters(), self.mt_loss.parameters())
|
||||
self.optimizer = torch.optim.Adam(params=all_params, lr=lr)
|
||||
self.scheduler = lr_scheduler.StepLR(self.optimizer, step_size=self.sched_step, gamma=self.sched_gamma)
|
||||
|
||||
def train(self):
|
||||
since = time.time()
|
||||
best_model_wts = copy.deepcopy(self.model.state_dict())
|
||||
best_acc = 1e6
|
||||
best_training_acc = 1e6
|
||||
best_epoch = 0
|
||||
epoch_losses = defaultdict(lambda: defaultdict(list))
|
||||
for epoch in range(self.num_epochs):
|
||||
running_loss = defaultdict(lambda: defaultdict(int))
|
||||
|
||||
# Each epoch has a training and validation phase
|
||||
for phase in ['train', 'val']:
|
||||
if phase == 'train':
|
||||
self.model.train() # Set model to training mode
|
||||
else:
|
||||
self.model.eval() # Set model to evaluate mode
|
||||
|
||||
for inputs, labels, _, _ in self.dataloaders[phase]:
|
||||
inputs = inputs.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
with torch.set_grad_enabled(phase == 'train'):
|
||||
if phase == 'train':
|
||||
outputs = self.model(inputs)
|
||||
loss, loss_values = self.mt_loss(outputs, labels, phase=phase)
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 2)
|
||||
self.optimizer.step()
|
||||
self.scheduler.step()
|
||||
|
||||
else:
|
||||
outputs = self.model(inputs)
|
||||
with torch.no_grad():
|
||||
loss_eval, loss_values_eval = self.mt_loss(outputs, labels, phase='val')
|
||||
self.epoch_logs(phase, loss_eval, loss_values_eval, inputs, running_loss)
|
||||
|
||||
self.cout_values(epoch, epoch_losses, running_loss)
|
||||
|
||||
# deep copy the model
|
||||
|
||||
if epoch_losses['val'][self.val_task][-1] < best_acc:
|
||||
best_acc = epoch_losses['val'][self.val_task][-1]
|
||||
best_training_acc = epoch_losses['train']['all'][-1]
|
||||
best_epoch = epoch
|
||||
best_model_wts = copy.deepcopy(self.model.state_dict())
|
||||
|
||||
time_elapsed = time.time() - since
|
||||
print('\n\n' + '-' * 120)
|
||||
self.logger.info('Training:\nTraining complete in {:.0f}m {:.0f}s'
|
||||
.format(time_elapsed // 60, time_elapsed % 60))
|
||||
self.logger.info('Best training Accuracy: {:.3f}'.format(best_training_acc))
|
||||
self.logger.info('Best validation Accuracy for {}: {:.3f}'.format(self.val_task, best_acc))
|
||||
self.logger.info('Saved weights of the model at epoch: {}'.format(best_epoch))
|
||||
|
||||
if self.print_loss:
|
||||
print_losses(epoch_losses)
|
||||
|
||||
# load best model weights
|
||||
self.model.load_state_dict(best_model_wts)
|
||||
return best_epoch
|
||||
|
||||
def epoch_logs(self, phase, loss, loss_values, inputs, running_loss):
|
||||
|
||||
running_loss[phase]['all'] += loss.item() * inputs.size(0)
|
||||
for i, task in enumerate(self.tasks):
|
||||
running_loss[phase][task] += loss_values[i].item() * inputs.size(0)
|
||||
|
||||
def evaluate(self, load=False, model=None, debug=False):
|
||||
|
||||
# To load a model instead of using the trained one
|
||||
if load:
|
||||
self.model.load_state_dict(torch.load(model, map_location=lambda storage, loc: storage))
|
||||
|
||||
# Average distance on training and test set after unnormalizing
|
||||
self.model.eval()
|
||||
dic_err = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0))) # initialized to zero
|
||||
dic_err['val']['sigmas'] = [0.] * len(self.tasks)
|
||||
dataset = KeypointsDataset(self.joints, phase='val')
|
||||
size_eval = len(dataset)
|
||||
start = 0
|
||||
with torch.no_grad():
|
||||
for end in range(self.VAL_BS, size_eval + self.VAL_BS, self.VAL_BS):
|
||||
end = end if end < size_eval else size_eval
|
||||
inputs, labels, _, _ = dataset[start:end]
|
||||
start = end
|
||||
inputs = inputs.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
|
||||
# Debug plot for input-output distributions
|
||||
if debug:
|
||||
debug_plots(inputs, labels)
|
||||
sys.exit()
|
||||
|
||||
# Forward pass
|
||||
outputs = self.model(inputs)
|
||||
self.compute_stats(outputs, labels, dic_err['val'], size_eval, clst='all')
|
||||
|
||||
self.cout_stats(dic_err['val'], size_eval, clst='all')
|
||||
# Evaluate performances on different clusters and save statistics
|
||||
for clst in self.clusters:
|
||||
inputs, labels, size_eval = dataset.get_cluster_annotations(clst)
|
||||
inputs, labels = inputs.to(self.device), labels.to(self.device)
|
||||
|
||||
# Forward pass on each cluster
|
||||
outputs = self.model(inputs)
|
||||
self.compute_stats(outputs, labels, dic_err['val'], size_eval, clst=clst)
|
||||
self.cout_stats(dic_err['val'], size_eval, clst=clst)
|
||||
|
||||
# Save the model and the results
|
||||
if self.save and not load:
|
||||
torch.save(self.model.state_dict(), self.path_model)
|
||||
print('-' * 120)
|
||||
self.logger.info("\nmodel saved: {} \n".format(self.path_model))
|
||||
else:
|
||||
self.logger.info("\nmodel not saved\n")
|
||||
|
||||
return dic_err, self.model
|
||||
|
||||
def compute_stats(self, outputs, labels, dic_err, size_eval, clst):
|
||||
"""Compute mean, bi and max of torch tensors"""
|
||||
|
||||
loss, loss_values = self.mt_loss(outputs, labels, phase='val')
|
||||
rel_frac = outputs.size(0) / size_eval
|
||||
|
||||
tasks = self.tasks[:-1] if self.tasks[-1] == 'aux' else self.tasks # Exclude auxiliary
|
||||
|
||||
for idx, task in enumerate(tasks):
|
||||
dic_err[clst][task] += float(loss_values[idx].item()) * (outputs.size(0) / size_eval)
|
||||
|
||||
# Distance
|
||||
errs = torch.abs(extract_outputs(outputs)['d'] - extract_labels(labels)['d'])
|
||||
|
||||
assert rel_frac > 0.99, "Variance of errors not supported with partial evaluation"
|
||||
|
||||
# Uncertainty
|
||||
bis = extract_outputs(outputs)['bi'].cpu()
|
||||
bi = float(torch.mean(bis).item())
|
||||
bi_perc = float(torch.sum(errs <= bis)) / errs.shape[0]
|
||||
dic_err[clst]['bi'] += bi * rel_frac
|
||||
dic_err[clst]['bi%'] += bi_perc * rel_frac
|
||||
dic_err[clst]['std'] = errs.std()
|
||||
|
||||
# (Don't) Save auxiliary task results
|
||||
if self.monocular:
|
||||
dic_err[clst]['aux'] = 0
|
||||
dic_err['sigmas'].append(0)
|
||||
else:
|
||||
acc_aux = get_accuracy(extract_outputs(outputs)['aux'], extract_labels(labels)['aux'])
|
||||
dic_err[clst]['aux'] += acc_aux * rel_frac
|
||||
|
||||
if self.auto_tune_mtl:
|
||||
assert len(loss_values) == 2 * len(self.tasks)
|
||||
for i, _ in enumerate(self.tasks):
|
||||
dic_err['sigmas'][i] += float(loss_values[len(tasks) + i + 1].item()) * rel_frac
|
||||
|
||||
def cout_stats(self, dic_err, size_eval, clst):
|
||||
if clst == 'all':
|
||||
print('-' * 120)
|
||||
self.logger.info("Evaluation, val set: \nAv. dist D: {:.2f} m with bi {:.2f} ({:.1f}%), \n"
|
||||
"X: {:.1f} cm, Y: {:.1f} cm \nOri: {:.1f} "
|
||||
"\n H: {:.1f} cm, W: {:.1f} cm, L: {:.1f} cm"
|
||||
"\nAuxiliary Task: {:.1f} %, "
|
||||
.format(dic_err[clst]['d'], dic_err[clst]['bi'], dic_err[clst]['bi%'] * 100,
|
||||
dic_err[clst]['x'] * 100, dic_err[clst]['y'] * 100,
|
||||
dic_err[clst]['ori'], dic_err[clst]['h'] * 100, dic_err[clst]['w'] * 100,
|
||||
dic_err[clst]['l'] * 100, dic_err[clst]['aux'] * 100))
|
||||
if self.auto_tune_mtl:
|
||||
self.logger.info("Sigmas: Z: {:.2f}, X: {:.2f}, Y:{:.2f}, H: {:.2f}, W: {:.2f}, L: {:.2f}, ORI: {:.2f}"
|
||||
" AUX:{:.2f}\n"
|
||||
.format(*dic_err['sigmas']))
|
||||
else:
|
||||
self.logger.info("Val err clust {} --> D:{:.2f}m, bi:{:.2f} ({:.1f}%), STD:{:.1f}m X:{:.1f} Y:{:.1f} "
|
||||
"Ori:{:.1f}d, H: {:.0f} W: {:.0f} L:{:.0f} for {} pp. "
|
||||
.format(clst, dic_err[clst]['d'], dic_err[clst]['bi'], dic_err[clst]['bi%'] * 100,
|
||||
dic_err[clst]['std'], dic_err[clst]['x'] * 100, dic_err[clst]['y'] * 100,
|
||||
dic_err[clst]['ori'], dic_err[clst]['h'] * 100, dic_err[clst]['w'] * 100,
|
||||
dic_err[clst]['l'] * 100, size_eval))
|
||||
|
||||
def cout_values(self, epoch, epoch_losses, running_loss):
|
||||
|
||||
string = '\r' + '{:.0f} '
|
||||
format_list = [epoch]
|
||||
for phase in running_loss:
|
||||
string = string + phase[0:1].upper() + ':'
|
||||
for el in running_loss['train']:
|
||||
loss = running_loss[phase][el] / self.dataset_sizes[phase]
|
||||
epoch_losses[phase][el].append(loss)
|
||||
if el == 'all':
|
||||
string = string + ':{:.1f} '
|
||||
format_list.append(loss)
|
||||
elif el in ('ori', 'aux'):
|
||||
string = string + el + ':{:.1f} '
|
||||
format_list.append(loss)
|
||||
else:
|
||||
string = string + el + ':{:.0f} '
|
||||
format_list.append(loss * 100)
|
||||
|
||||
if epoch % 10 == 0:
|
||||
print(string.format(*format_list))
|
||||
|
||||
|
||||
def debug_plots(inputs, labels):
|
||||
inputs_shoulder = inputs.cpu().numpy()[:, 5]
|
||||
inputs_hip = inputs.cpu().numpy()[:, 11]
|
||||
labels = labels.cpu().numpy()
|
||||
heights = inputs_hip - inputs_shoulder
|
||||
plt.figure(1)
|
||||
plt.hist(heights, bins='auto')
|
||||
plt.show()
|
||||
plt.figure(2)
|
||||
plt.hist(labels, bins='auto')
|
||||
plt.show()
|
||||
|
||||
|
||||
def print_losses(epoch_losses):
|
||||
for idx, phase in enumerate(epoch_losses):
|
||||
for idx_2, el in enumerate(epoch_losses['train']):
|
||||
plt.figure(idx + idx_2)
|
||||
plt.plot(epoch_losses[phase][el][10:], label='{} Loss: {}'.format(phase, el))
|
||||
plt.savefig('figures/{}_loss_{}.png'.format(phase, el))
|
||||
plt.close()
|
||||
|
||||
|
||||
def get_accuracy(outputs, labels):
|
||||
"""From Binary cross entropy outputs to accuracy"""
|
||||
|
||||
mask = outputs >= 0.5
|
||||
accuracy = 1. - torch.mean(torch.abs(mask.float() - labels)).item()
|
||||
return accuracy
|
||||
11
monstereo/utils/__init__.py
Normal file
11
monstereo/utils/__init__.py
Normal file
@ -0,0 +1,11 @@
|
||||
|
||||
from .iou import get_iou_matches, reorder_matches, get_iou_matrix, get_iou_matches_matrix
|
||||
from .misc import get_task_error, get_pixel_error, append_cluster, open_annotations, make_new_directory, normalize_hwl
|
||||
from .kitti import check_conditions, get_difficulty, split_training, parse_ground_truth, get_calibration, \
|
||||
factory_basename, factory_file, get_category, read_and_rewrite
|
||||
from .camera import xyz_from_distance, get_keypoints, pixel_to_camera, project_3d, open_image, correct_angle,\
|
||||
to_spherical, to_cartesian, back_correct_angles, project_to_pixels
|
||||
from .logs import set_logger
|
||||
from ..utils.nuscenes import select_categories
|
||||
from ..utils.stereo import mask_joint_disparity, average_locations, extract_stereo_matches, \
|
||||
verify_stereo, disparity_to_depth
|
||||
250
monstereo/utils/camera.py
Normal file
250
monstereo/utils/camera.py
Normal file
@ -0,0 +1,250 @@
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def pixel_to_camera(uv_tensor, kk, z_met):
|
||||
"""
|
||||
Convert a tensor in pixel coordinate to absolute camera coordinates
|
||||
It accepts lists or torch/numpy tensors of (m, 2) or (m, x, 2)
|
||||
where x is the number of keypoints
|
||||
"""
|
||||
if isinstance(uv_tensor, (list, np.ndarray)):
|
||||
uv_tensor = torch.tensor(uv_tensor)
|
||||
if isinstance(kk, list):
|
||||
kk = torch.tensor(kk)
|
||||
if uv_tensor.size()[-1] != 2:
|
||||
uv_tensor = uv_tensor.permute(0, 2, 1) # permute to have 2 as last dim to be padded
|
||||
assert uv_tensor.size()[-1] == 2, "Tensor size not recognized"
|
||||
uv_padded = F.pad(uv_tensor, pad=(0, 1), mode="constant", value=1) # pad only last-dim below with value 1
|
||||
|
||||
kk_1 = torch.inverse(kk)
|
||||
xyz_met_norm = torch.matmul(uv_padded, kk_1.t()) # More general than torch.mm
|
||||
xyz_met = xyz_met_norm * z_met
|
||||
|
||||
return xyz_met
|
||||
|
||||
|
||||
def project_to_pixels(xyz, kk):
|
||||
"""Project a single point in space into the image"""
|
||||
xx, yy, zz = np.dot(kk, xyz)
|
||||
uu = round(xx / zz)
|
||||
vv = round(yy / zz)
|
||||
return [uu, vv]
|
||||
|
||||
|
||||
def project_3d(box_obj, kk):
|
||||
"""
|
||||
Project a 3D bounding box into the image plane using the central corners
|
||||
"""
|
||||
box_2d = []
|
||||
# Obtain the 3d points of the box
|
||||
xc, yc, zc = box_obj.center
|
||||
ww, _, hh, = box_obj.wlh
|
||||
|
||||
# Points corresponding to a box at the z of the center
|
||||
x1 = xc - ww/2
|
||||
y1 = yc - hh/2 # Y axis directed below
|
||||
x2 = xc + ww/2
|
||||
y2 = yc + hh/2
|
||||
xyz1 = np.array([x1, y1, zc])
|
||||
xyz2 = np.array([x2, y2, zc])
|
||||
corners_3d = np.array([xyz1, xyz2])
|
||||
|
||||
# Project them and convert into pixel coordinates
|
||||
for xyz in corners_3d:
|
||||
xx, yy, zz = np.dot(kk, xyz)
|
||||
uu = xx / zz
|
||||
vv = yy / zz
|
||||
box_2d.append(uu)
|
||||
box_2d.append(vv)
|
||||
|
||||
return box_2d
|
||||
|
||||
|
||||
def get_keypoints(keypoints, mode):
|
||||
"""
|
||||
Extract center, shoulder or hip points of a keypoint
|
||||
Input --> list or torch/numpy tensor [(m, 3, 17) or (3, 17)]
|
||||
Output --> torch.tensor [(m, 2)]
|
||||
"""
|
||||
if isinstance(keypoints, (list, np.ndarray)):
|
||||
keypoints = torch.tensor(keypoints)
|
||||
if len(keypoints.size()) == 2: # add batch dim
|
||||
keypoints = keypoints.unsqueeze(0)
|
||||
assert len(keypoints.size()) == 3 and keypoints.size()[1] == 3, "tensor dimensions not recognized"
|
||||
assert mode in ['center', 'bottom', 'head', 'shoulder', 'hip', 'ankle']
|
||||
|
||||
kps_in = keypoints[:, 0:2, :] # (m, 2, 17)
|
||||
if mode == 'center':
|
||||
kps_max, _ = kps_in.max(2) # returns value, indices
|
||||
kps_min, _ = kps_in.min(2)
|
||||
kps_out = (kps_max - kps_min) / 2 + kps_min # (m, 2) as keepdims is False
|
||||
|
||||
elif mode == 'bottom': # bottom center for kitti evaluation
|
||||
kps_max, _ = kps_in.max(2)
|
||||
kps_min, _ = kps_in.min(2)
|
||||
kps_out_x = (kps_max[:, 0:1] - kps_min[:, 0:1]) / 2 + kps_min[:, 0:1]
|
||||
kps_out_y = kps_max[:, 1:2]
|
||||
kps_out = torch.cat((kps_out_x, kps_out_y), -1)
|
||||
|
||||
elif mode == 'head':
|
||||
kps_out = kps_in[:, :, 0:5].mean(2)
|
||||
|
||||
elif mode == 'shoulder':
|
||||
kps_out = kps_in[:, :, 5:7].mean(2)
|
||||
|
||||
elif mode == 'hip':
|
||||
kps_out = kps_in[:, :, 11:13].mean(2)
|
||||
|
||||
elif mode == 'ankle':
|
||||
kps_out = kps_in[:, :, 15:17].mean(2)
|
||||
|
||||
return kps_out # (m, 2)
|
||||
|
||||
|
||||
def transform_kp(kps, tr_mode):
|
||||
"""Apply different transformations to the keypoints based on the tr_mode"""
|
||||
|
||||
assert tr_mode in ("None", "singularity", "upper", "lower", "horizontal", "vertical", "lateral",
|
||||
'shoulder', 'knee', 'upside', 'falling', 'random')
|
||||
|
||||
uu_c, vv_c = get_keypoints(kps, mode='center')
|
||||
|
||||
if tr_mode == "None":
|
||||
return kps
|
||||
|
||||
if tr_mode == "singularity":
|
||||
uus = [uu_c for uu in kps[0]]
|
||||
vvs = [vv_c for vv in kps[1]]
|
||||
|
||||
elif tr_mode == "vertical":
|
||||
uus = [uu_c for uu in kps[0]]
|
||||
vvs = kps[1]
|
||||
|
||||
elif tr_mode == 'horizontal':
|
||||
uus = kps[0]
|
||||
vvs = [vv_c for vv in kps[1]]
|
||||
|
||||
elif tr_mode == 'shoulder':
|
||||
uus = kps[0]
|
||||
vvs = kps[1][:7] + [kps[1][6] for vv in kps[1][7:]]
|
||||
|
||||
elif tr_mode == 'knee':
|
||||
uus = kps[0]
|
||||
vvs = [kps[1][14] for vv in kps[1][:13]] + kps[1][13:]
|
||||
|
||||
elif tr_mode == 'up':
|
||||
uus = kps[0]
|
||||
vvs = [kp - 300 for kp in kps[1]]
|
||||
|
||||
elif tr_mode == 'falling':
|
||||
uus = [kps[0][16] - kp + kps[1][16] for kp in kps[1]]
|
||||
vvs = [kps[1][16] - kp + kps[0][16] for kp in kps[0]]
|
||||
|
||||
elif tr_mode == 'random':
|
||||
uu_min = min(kps[0])
|
||||
uu_max = max(kps[0])
|
||||
vv_min = min(kps[1])
|
||||
vv_max = max(kps[1])
|
||||
np.random.seed(6)
|
||||
uus = np.random.uniform(uu_min, uu_max, len(kps[0])).tolist()
|
||||
vvs = np.random.uniform(vv_min, vv_max, len(kps[1])).tolist()
|
||||
|
||||
return [uus, vvs, kps[2], []]
|
||||
|
||||
|
||||
def xyz_from_distance(distances, xy_centers):
|
||||
"""
|
||||
From distances and normalized image coordinates (z=1), extract the real world position xyz
|
||||
distances --> tensor (m,1) or (m) or float
|
||||
xy_centers --> tensor(m,3) or (3)
|
||||
"""
|
||||
|
||||
if isinstance(distances, float):
|
||||
distances = torch.tensor(distances).unsqueeze(0)
|
||||
if len(distances.size()) == 1:
|
||||
distances = distances.unsqueeze(1)
|
||||
if len(xy_centers.size()) == 1:
|
||||
xy_centers = xy_centers.unsqueeze(0)
|
||||
|
||||
assert xy_centers.size()[-1] == 3 and distances.size()[-1] == 1, "Size of tensor not recognized"
|
||||
|
||||
return xy_centers * distances / torch.sqrt(1 + xy_centers[:, 0:1].pow(2) + xy_centers[:, 1:2].pow(2))
|
||||
|
||||
|
||||
def open_image(path_image):
|
||||
with open(path_image, 'rb') as f:
|
||||
pil_image = Image.open(f).convert('RGB')
|
||||
return pil_image
|
||||
|
||||
|
||||
def correct_angle(yaw, xyz):
|
||||
"""
|
||||
Correct the angle from the egocentric (global/ rotation_y)
|
||||
to allocentric (camera perspective / observation angle)
|
||||
and to be -pi < angle < pi
|
||||
"""
|
||||
correction = math.atan2(xyz[0], xyz[2])
|
||||
yaw = yaw - correction
|
||||
if yaw > np.pi:
|
||||
yaw -= 2 * np.pi
|
||||
elif yaw < -np.pi:
|
||||
yaw += 2 * np.pi
|
||||
assert -2 * np.pi <= yaw <= 2 * np.pi
|
||||
return math.sin(yaw), math.cos(yaw), yaw
|
||||
|
||||
|
||||
def back_correct_angles(yaws, xyz):
|
||||
corrections = torch.atan2(xyz[:, 0], xyz[:, 2])
|
||||
yaws = yaws + corrections.view(-1, 1)
|
||||
mask_up = yaws > math.pi
|
||||
yaws[mask_up] -= 2 * math.pi
|
||||
mask_down = yaws < -math.pi
|
||||
yaws[mask_down] += 2 * math.pi
|
||||
assert torch.all(yaws < math.pi) & torch.all(yaws > - math.pi)
|
||||
return yaws
|
||||
|
||||
|
||||
def to_spherical(xyz):
|
||||
"""convert from cartesian to spherical"""
|
||||
xyz = np.array(xyz)
|
||||
r = np.linalg.norm(xyz)
|
||||
theta = math.atan2(xyz[2], xyz[0])
|
||||
|
||||
assert 0 <= theta < math.pi # 0 when positive x and no z.
|
||||
psi = math.acos(xyz[1] / r)
|
||||
assert 0 <= psi <= math.pi
|
||||
return [r, theta, psi]
|
||||
|
||||
|
||||
def to_cartesian(rtp, mode=None):
|
||||
"""convert from spherical to cartesian"""
|
||||
|
||||
if isinstance(rtp, torch.Tensor):
|
||||
if mode in ('x', 'y'):
|
||||
r = rtp[:, 2]
|
||||
t = rtp[:, 0]
|
||||
p = rtp[:, 1]
|
||||
if mode == 'x':
|
||||
x = r * torch.sin(p) * torch.cos(t)
|
||||
return x.view(-1, 1)
|
||||
|
||||
if mode == 'y':
|
||||
y = r * torch.cos(p)
|
||||
return y.view(-1, 1)
|
||||
|
||||
xyz = rtp.clone()
|
||||
xyz[:, 0] = rtp[:, 0] * torch.sin(rtp[:, 2]) * torch.cos(rtp[:, 1])
|
||||
xyz[:, 1] = rtp[:, 0] * torch.cos(rtp[:, 2])
|
||||
xyz[:, 2] = rtp[:, 0] * torch.sin(rtp[:, 2]) * torch.sin(rtp[:, 1])
|
||||
return xyz
|
||||
|
||||
x = rtp[0] * math.sin(rtp[2]) * math.cos(rtp[1])
|
||||
y = rtp[0] * math.cos(rtp[2])
|
||||
z = rtp[0] * math.sin(rtp[2]) * math.sin(rtp[1])
|
||||
return[x, y, z]
|
||||
98
monstereo/utils/iou.py
Normal file
98
monstereo/utils/iou.py
Normal file
@ -0,0 +1,98 @@
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def calculate_iou(box1, box2):
|
||||
|
||||
# Calculate the (x1, y1, x2, y2) coordinates of the intersection of box1 and box2. Calculate its Area.
|
||||
# box1 = [-3, 8.5, 3, 11.5]
|
||||
# box2 = [-3, 9.5, 3, 12.5]
|
||||
# box1 = [1086.84, 156.24, 1181.62, 319.12]
|
||||
# box2 = [1078.333357, 159.086347, 1193.771014, 322.239107]
|
||||
|
||||
xi1 = max(box1[0], box2[0])
|
||||
yi1 = max(box1[1], box2[1])
|
||||
xi2 = min(box1[2], box2[2])
|
||||
yi2 = min(box1[3], box2[3])
|
||||
inter_area = max((xi2 - xi1), 0) * max((yi2 - yi1), 0) # Max keeps into account not overlapping box
|
||||
|
||||
# Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B)
|
||||
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
||||
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
||||
union_area = box1_area + box2_area - inter_area
|
||||
|
||||
# compute the IoU
|
||||
iou = inter_area / union_area
|
||||
|
||||
return iou
|
||||
|
||||
|
||||
def get_iou_matrix(boxes, boxes_gt):
|
||||
"""
|
||||
Get IoU matrix between predicted and ground truth boxes
|
||||
Dim: (boxes, boxes_gt)
|
||||
"""
|
||||
iou_matrix = np.zeros((len(boxes), len(boxes_gt)))
|
||||
for idx, box in enumerate(boxes):
|
||||
for idx_gt, box_gt in enumerate(boxes_gt):
|
||||
iou_matrix[idx, idx_gt] = calculate_iou(box, box_gt)
|
||||
return iou_matrix
|
||||
|
||||
|
||||
def get_iou_matches(boxes, boxes_gt, iou_min=0.3):
|
||||
"""From 2 sets of boxes and a minimum threshold, compute the matching indices for IoU matches"""
|
||||
|
||||
matches = []
|
||||
used = []
|
||||
if not boxes or not boxes_gt:
|
||||
return []
|
||||
confs = [box[4] for box in boxes]
|
||||
|
||||
indices = list(np.argsort(confs))
|
||||
for idx in indices[::-1]:
|
||||
box = boxes[idx]
|
||||
ious = []
|
||||
for idx_gt, box_gt in enumerate(boxes_gt):
|
||||
iou = calculate_iou(box, box_gt)
|
||||
ious.append(iou)
|
||||
idx_gt_max = int(np.argmax(ious))
|
||||
if (ious[idx_gt_max] >= iou_min) and (idx_gt_max not in used):
|
||||
matches.append((idx, idx_gt_max))
|
||||
used.append(idx_gt_max)
|
||||
return matches
|
||||
|
||||
|
||||
def get_iou_matches_matrix(boxes, boxes_gt, thresh):
|
||||
"""From 2 sets of boxes and a minimum threshold, compute the matching indices for IoU matchings"""
|
||||
|
||||
iou_matrix = get_iou_matrix(boxes, boxes_gt)
|
||||
if not iou_matrix.size:
|
||||
return []
|
||||
|
||||
matches = []
|
||||
iou_max = np.max(iou_matrix)
|
||||
while iou_max > thresh:
|
||||
# Extract the indeces of the max
|
||||
args_max = np.unravel_index(np.argmax(iou_matrix, axis=None), iou_matrix.shape)
|
||||
matches.append(args_max)
|
||||
iou_matrix[args_max[0], :] = 0
|
||||
iou_matrix[:, args_max[1]] = 0
|
||||
iou_max = np.max(iou_matrix)
|
||||
return matches
|
||||
|
||||
|
||||
def reorder_matches(matches, boxes, mode='left_rigth'):
|
||||
"""
|
||||
Reorder a list of (idx, idx_gt) matches based on position of the detections in the image
|
||||
ordered_boxes = (5, 6, 7, 0, 1, 4, 2, 4)
|
||||
matches = [(0, x), (2,x), (4,x), (3,x), (5,x)]
|
||||
Output --> [(5, x), (0, x), (3, x), (2, x), (5, x)]
|
||||
"""
|
||||
|
||||
assert mode == 'left_right'
|
||||
|
||||
# Order the boxes based on the left-right position in the image and
|
||||
ordered_boxes = np.argsort([box[0] for box in boxes]) # indices of boxes ordered from left to right
|
||||
matches_left = [idx for (idx, _) in matches]
|
||||
|
||||
return [matches[matches_left.index(idx_boxes)] for idx_boxes in ordered_boxes if idx_boxes in matches_left]
|
||||
268
monstereo/utils/kitti.py
Normal file
268
monstereo/utils/kitti.py
Normal file
@ -0,0 +1,268 @@
|
||||
|
||||
import math
|
||||
import os
|
||||
import glob
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_calibration(path_txt):
|
||||
"""Read calibration parameters from txt file:
|
||||
For the left color camera we use P2 which is K * [I|t]
|
||||
|
||||
P = [fu, 0, x0, fu*t1-x0*t3
|
||||
0, fv, y0, fv*t2-y0*t3
|
||||
0, 0, 1, t3]
|
||||
|
||||
check also http://ksimek.github.io/2013/08/13/intrinsic/
|
||||
|
||||
Simple case test:
|
||||
xyz = np.array([2, 3, 30, 1]).reshape(4, 1)
|
||||
xyz_2 = xyz[0:-1] + tt
|
||||
uv_temp = np.dot(kk, xyz_2)
|
||||
uv_1 = uv_temp / uv_temp[-1]
|
||||
kk_1 = np.linalg.inv(kk)
|
||||
xyz_temp2 = np.dot(kk_1, uv_1)
|
||||
xyz_new_2 = xyz_temp2 * xyz_2[2]
|
||||
xyz_fin_2 = xyz_new_2 - tt
|
||||
"""
|
||||
|
||||
with open(path_txt, "r") as ff:
|
||||
file = ff.readlines()
|
||||
p2_str = file[2].split()[1:]
|
||||
p2_list = [float(xx) for xx in p2_str]
|
||||
p2 = np.array(p2_list).reshape(3, 4)
|
||||
|
||||
p3_str = file[3].split()[1:]
|
||||
p3_list = [float(xx) for xx in p3_str]
|
||||
p3 = np.array(p3_list).reshape(3, 4)
|
||||
|
||||
kk, tt = get_translation(p2)
|
||||
kk_right, tt_right = get_translation(p3)
|
||||
|
||||
return [kk, tt], [kk_right, tt_right]
|
||||
|
||||
|
||||
def get_translation(pp):
|
||||
"""Separate intrinsic matrix from translation and convert in lists"""
|
||||
|
||||
kk = pp[:, :-1]
|
||||
f_x = kk[0, 0]
|
||||
f_y = kk[1, 1]
|
||||
x0, y0 = kk[2, 0:2]
|
||||
aa, bb, t3 = pp[0:3, 3]
|
||||
t1 = float((aa - x0*t3) / f_x)
|
||||
t2 = float((bb - y0*t3) / f_y)
|
||||
tt = [t1, t2, float(t3)]
|
||||
return kk.tolist(), tt
|
||||
|
||||
|
||||
def get_simplified_calibration(path_txt):
|
||||
|
||||
with open(path_txt, "r") as ff:
|
||||
file = ff.readlines()
|
||||
|
||||
for line in file:
|
||||
if line[:4] == 'K_02':
|
||||
kk_str = line[4:].split()[1:]
|
||||
kk_list = [float(xx) for xx in kk_str]
|
||||
kk = np.array(kk_list).reshape(3, 3).tolist()
|
||||
return kk
|
||||
|
||||
raise ValueError('Matrix K_02 not found in the file')
|
||||
|
||||
|
||||
def check_conditions(line, category, method, thresh=0.3):
|
||||
"""Check conditions of our or m3d txt file"""
|
||||
|
||||
check = False
|
||||
assert category in ['pedestrian', 'cyclist', 'all']
|
||||
|
||||
if category == 'all':
|
||||
category = ['pedestrian', 'person_sitting', 'cyclist']
|
||||
|
||||
if method == 'gt':
|
||||
if line.split()[0].lower() in category:
|
||||
check = True
|
||||
|
||||
else:
|
||||
conf = float(line[15])
|
||||
if line[0].lower() in category and conf >= thresh:
|
||||
check = True
|
||||
return check
|
||||
|
||||
|
||||
def get_difficulty(box, trunc, occ):
|
||||
|
||||
hh = box[3] - box[1]
|
||||
if hh >= 40 and trunc <= 0.15 and occ <= 0:
|
||||
cat = 'easy'
|
||||
elif trunc <= 0.3 and occ <= 1 and hh >= 25:
|
||||
cat = 'moderate'
|
||||
elif trunc <= 0.5 and occ <= 2 and hh >= 25:
|
||||
cat = 'hard'
|
||||
else:
|
||||
cat = 'excluded'
|
||||
return cat
|
||||
|
||||
|
||||
def split_training(names_gt, path_train, path_val):
|
||||
"""Split training and validation images"""
|
||||
set_gt = set(names_gt)
|
||||
set_train = set()
|
||||
set_val = set()
|
||||
|
||||
with open(path_train, "r") as f_train:
|
||||
for line in f_train:
|
||||
set_train.add(line[:-1] + '.txt')
|
||||
with open(path_val, "r") as f_val:
|
||||
for line in f_val:
|
||||
set_val.add(line[:-1] + '.txt')
|
||||
|
||||
set_train = set_gt.intersection(set_train)
|
||||
set_train.remove('000518.txt')
|
||||
set_train.remove('005692.txt')
|
||||
set_train.remove('003009.txt')
|
||||
set_train = tuple(set_train)
|
||||
set_val = tuple(set_gt.intersection(set_val))
|
||||
assert set_train and set_val, "No validation or training annotations"
|
||||
return set_train, set_val
|
||||
|
||||
|
||||
def parse_ground_truth(path_gt, category, spherical=False, verbose=False):
|
||||
"""Parse KITTI ground truth files"""
|
||||
from ..utils import correct_angle, to_spherical
|
||||
|
||||
boxes_gt = []
|
||||
ys = []
|
||||
truncs_gt = [] # Float from 0 to 1
|
||||
occs_gt = [] # Either 0,1,2,3 fully visible, partly occluded, largely occluded, unknown
|
||||
lines = []
|
||||
|
||||
with open(path_gt, "r") as f_gt:
|
||||
for line_gt in f_gt:
|
||||
line = line_gt.split()
|
||||
if check_conditions(line_gt, category, method='gt'):
|
||||
truncs_gt.append(float(line[1]))
|
||||
occs_gt.append(int(line[2]))
|
||||
boxes_gt.append([float(x) for x in line[4:8]])
|
||||
xyz = [float(x) for x in line[11:14]]
|
||||
hwl = [float(x) for x in line[8:11]]
|
||||
dd = float(math.sqrt(xyz[0] ** 2 + xyz[1] ** 2 + xyz[2] ** 2))
|
||||
yaw = float(line[14])
|
||||
assert - math.pi <= yaw <= math.pi
|
||||
alpha = float(line[3])
|
||||
sin, cos, yaw_corr = correct_angle(yaw, xyz)
|
||||
assert min(abs(-yaw_corr - alpha), (abs(yaw_corr - alpha))) < 0.15, "more than 10 degrees of error"
|
||||
if spherical:
|
||||
rtp = to_spherical(xyz)
|
||||
loc = rtp[1:3] + xyz[2:3] + rtp[0:1] # [theta, psi, z, r]
|
||||
else:
|
||||
loc = xyz + [dd]
|
||||
# cat = 0 if line[0] in ('Pedestrian', 'Person_sitting') else 1
|
||||
if line[0] in ('Pedestrian', 'Person_sitting'):
|
||||
cat = 0
|
||||
else:
|
||||
cat = 1
|
||||
output = loc + hwl + [sin, cos, yaw, cat]
|
||||
ys.append(output)
|
||||
if verbose:
|
||||
lines.append(line_gt)
|
||||
if verbose:
|
||||
return boxes_gt, ys, truncs_gt, occs_gt, lines
|
||||
return boxes_gt, ys, truncs_gt, occs_gt
|
||||
|
||||
|
||||
def factory_basename(dir_ann, dir_gt):
|
||||
""" Return all the basenames in the annotations folder corresponding to validation images"""
|
||||
|
||||
# Extract ground truth validation images
|
||||
names_gt = tuple(os.listdir(dir_gt))
|
||||
path_train = os.path.join('splits', 'kitti_train.txt')
|
||||
path_val = os.path.join('splits', 'kitti_val.txt')
|
||||
_, set_val_gt = split_training(names_gt, path_train, path_val)
|
||||
set_val_gt = {os.path.basename(x).split('.')[0] for x in set_val_gt}
|
||||
|
||||
# Extract pifpaf files corresponding to validation images
|
||||
list_ann = glob.glob(os.path.join(dir_ann, '*.json'))
|
||||
set_basename = {os.path.basename(x).split('.')[0] for x in list_ann}
|
||||
set_val = set_basename.intersection(set_val_gt)
|
||||
assert set_val, " Missing json annotations file to create txt files for KITTI datasets"
|
||||
return set_val
|
||||
|
||||
|
||||
def factory_file(path_calib, dir_ann, basename, mode='left'):
|
||||
"""Choose the annotation and the calibration files. Stereo option with ite = 1"""
|
||||
|
||||
assert mode in ('left', 'right')
|
||||
p_left, p_right = get_calibration(path_calib)
|
||||
|
||||
if mode == 'left':
|
||||
kk, tt = p_left[:]
|
||||
path_ann = os.path.join(dir_ann, basename + '.png.pifpaf.json')
|
||||
|
||||
else:
|
||||
kk, tt = p_right[:]
|
||||
path_ann = os.path.join(dir_ann + '_right', basename + '.png.pifpaf.json')
|
||||
|
||||
from ..utils import open_annotations
|
||||
annotations = open_annotations(path_ann)
|
||||
|
||||
return annotations, kk, tt
|
||||
|
||||
|
||||
def get_category(keypoints, path_byc):
|
||||
"""Find the category for each of the keypoints"""
|
||||
|
||||
from ..utils import open_annotations
|
||||
dic_byc = open_annotations(path_byc)
|
||||
boxes_byc = dic_byc['boxes'] if dic_byc else []
|
||||
boxes_ped = make_lower_boxes(keypoints)
|
||||
|
||||
matches = get_matches_bikes(boxes_ped, boxes_byc)
|
||||
list_byc = [match[0] for match in matches]
|
||||
categories = [1.0 if idx in list_byc else 0.0 for idx, _ in enumerate(boxes_ped)]
|
||||
return categories
|
||||
|
||||
|
||||
def get_matches_bikes(boxes_ped, boxes_byc):
|
||||
from . import get_iou_matches_matrix
|
||||
matches = get_iou_matches_matrix(boxes_ped, boxes_byc, thresh=0.15)
|
||||
matches_b = []
|
||||
for idx, idx_byc in matches:
|
||||
box_ped = boxes_ped[idx]
|
||||
box_byc = boxes_byc[idx_byc]
|
||||
width_ped = box_ped[2] - box_ped[0]
|
||||
width_byc = box_byc[2] - box_byc[0]
|
||||
center_ped = (box_ped[2] + box_ped[0]) / 2
|
||||
center_byc = (box_byc[2] + box_byc[0]) / 2
|
||||
if abs(center_ped - center_byc) < min(width_ped, width_byc) / 4:
|
||||
matches_b.append((idx, idx_byc))
|
||||
return matches_b
|
||||
|
||||
|
||||
def make_lower_boxes(keypoints):
|
||||
lower_boxes = []
|
||||
keypoints = np.array(keypoints)
|
||||
for kps in keypoints:
|
||||
lower_boxes.append([min(kps[0, 9:]), min(kps[1, 9:]), max(kps[0, 9:]), max(kps[1, 9:])])
|
||||
return lower_boxes
|
||||
|
||||
|
||||
def read_and_rewrite(path_orig, path_new):
|
||||
"""Read and write same txt file. If file not found, create open file"""
|
||||
try:
|
||||
with open(path_orig, "r") as f_gt:
|
||||
with open(path_new, "w+") as ff:
|
||||
for line_gt in f_gt:
|
||||
# if check_conditions(line_gt, category='all', method='gt'):
|
||||
line = line_gt.split()
|
||||
hwl = [float(x) for x in line[8:11]]
|
||||
hwl = " ".join([str(i)[0:4] for i in hwl])
|
||||
temp_1 = " ".join([str(i) for i in line[0: 8]])
|
||||
temp_2 = " ".join([str(i) for i in line[11:]])
|
||||
line_new = temp_1 + ' ' + hwl + ' ' + temp_2 + '\n'
|
||||
ff.write("%s" % line_new)
|
||||
except FileNotFoundError:
|
||||
ff = open(path_new, "a+")
|
||||
ff.close()
|
||||
27
monstereo/utils/logs.py
Normal file
27
monstereo/utils/logs.py
Normal file
@ -0,0 +1,27 @@
|
||||
|
||||
import logging
|
||||
|
||||
|
||||
def set_logger(log_path):
|
||||
"""Set the logger to log info in terminal and file `log_path`.
|
||||
```
|
||||
logging.info("Starting training...")
|
||||
```
|
||||
Args:
|
||||
log_path: (string) where to log
|
||||
"""
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.INFO)
|
||||
logger.propagate = False
|
||||
|
||||
# Logging to a file
|
||||
file_handler = logging.FileHandler(log_path)
|
||||
file_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s'))
|
||||
logger.addHandler(file_handler)
|
||||
|
||||
# Logging to console
|
||||
stream_handler = logging.StreamHandler()
|
||||
stream_handler.setFormatter(logging.Formatter('%(message)s'))
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
return logger
|
||||
74
monstereo/utils/misc.py
Normal file
74
monstereo/utils/misc.py
Normal file
@ -0,0 +1,74 @@
|
||||
import json
|
||||
import shutil
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def append_cluster(dic_jo, phase, xx, ys, kps):
|
||||
"""Append the annotation based on its distance"""
|
||||
|
||||
if ys[3] <= 10:
|
||||
dic_jo[phase]['clst']['10']['kps'].append(kps)
|
||||
dic_jo[phase]['clst']['10']['X'].append(xx)
|
||||
dic_jo[phase]['clst']['10']['Y'].append(ys)
|
||||
elif ys[3] <= 20:
|
||||
dic_jo[phase]['clst']['20']['kps'].append(kps)
|
||||
dic_jo[phase]['clst']['20']['X'].append(xx)
|
||||
dic_jo[phase]['clst']['20']['Y'].append(ys)
|
||||
elif ys[3] <= 30:
|
||||
dic_jo[phase]['clst']['30']['kps'].append(kps)
|
||||
dic_jo[phase]['clst']['30']['X'].append(xx)
|
||||
dic_jo[phase]['clst']['30']['Y'].append(ys)
|
||||
elif ys[3] < 50:
|
||||
dic_jo[phase]['clst']['50']['kps'].append(kps)
|
||||
dic_jo[phase]['clst']['50']['X'].append(xx)
|
||||
dic_jo[phase]['clst']['50']['Y'].append(ys)
|
||||
else:
|
||||
dic_jo[phase]['clst']['>50']['kps'].append(kps)
|
||||
dic_jo[phase]['clst']['>50']['X'].append(xx)
|
||||
dic_jo[phase]['clst']['>50']['Y'].append(ys)
|
||||
|
||||
|
||||
def get_task_error(dd):
|
||||
"""Get target error not knowing the gender, modeled through a Gaussian Mixure model"""
|
||||
mm = 0.046
|
||||
return dd * mm
|
||||
|
||||
|
||||
def get_pixel_error(zz_gt):
|
||||
"""calculate error in stereo distance due to 1 pixel mismatch (function of depth)"""
|
||||
|
||||
disp = 0.54 * 721 / zz_gt
|
||||
error = abs(zz_gt - 0.54 * 721 / (disp - 1))
|
||||
return error
|
||||
|
||||
|
||||
def open_annotations(path_ann):
|
||||
try:
|
||||
with open(path_ann, 'r') as f:
|
||||
annotations = json.load(f)
|
||||
except FileNotFoundError:
|
||||
annotations = []
|
||||
return annotations
|
||||
|
||||
|
||||
def make_new_directory(dir_out):
|
||||
"""Remove the output directory if already exists (avoid residual txt files)"""
|
||||
if os.path.exists(dir_out):
|
||||
shutil.rmtree(dir_out)
|
||||
os.makedirs(dir_out)
|
||||
print("Created empty output directory for {} txt files".format(dir_out))
|
||||
|
||||
|
||||
def normalize_hwl(lab):
|
||||
|
||||
AV_H = 1.72
|
||||
AV_W = 0.75
|
||||
AV_L = 0.68
|
||||
HLW_STD = 0.1
|
||||
|
||||
hwl = lab[4:7]
|
||||
hwl_new = list((np.array(hwl) - np.array([AV_H, AV_W, AV_L])) / HLW_STD)
|
||||
lab_new = lab[0:4] + hwl_new + lab[7:]
|
||||
return lab_new
|
||||
100
monstereo/utils/nuscenes.py
Normal file
100
monstereo/utils/nuscenes.py
Normal file
@ -0,0 +1,100 @@
|
||||
|
||||
import random
|
||||
import json
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_unique_tokens(list_fin):
|
||||
"""
|
||||
list of json files --> list of unique scene tokens
|
||||
"""
|
||||
list_token_scene = []
|
||||
|
||||
# Open one json file at a time
|
||||
for name_fin in list_fin:
|
||||
with open(name_fin, 'r') as f:
|
||||
dict_fin = json.load(f)
|
||||
|
||||
# Check if the token scene is already in the list and if not add it
|
||||
if dict_fin['token_scene'] not in list_token_scene:
|
||||
list_token_scene.append(dict_fin['token_scene'])
|
||||
|
||||
return list_token_scene
|
||||
|
||||
|
||||
def split_scenes(list_token_scene, train, val, dir_main, save=False, load=True):
|
||||
"""
|
||||
Split the list according tr, val percentages (test percentage is a consequence) after shuffling the order
|
||||
"""
|
||||
|
||||
path_split = os.path.join(dir_main, 'scenes', 'split_scenes.json')
|
||||
|
||||
if save:
|
||||
random.seed(1)
|
||||
random.shuffle(list_token_scene) # it shuffles in place
|
||||
n_scenes = len(list_token_scene)
|
||||
n_train = round(n_scenes * train / 100)
|
||||
n_val = round(n_scenes * val / 100)
|
||||
list_train = list_token_scene[0: n_train]
|
||||
list_val = list_token_scene[n_train: n_train + n_val]
|
||||
list_test = list_token_scene[n_train + n_val:]
|
||||
|
||||
dic_split = {'train': list_train, 'val': list_val, 'test': list_test}
|
||||
with open(path_split, 'w') as f:
|
||||
json.dump(dic_split, f)
|
||||
|
||||
if load:
|
||||
with open(path_split, 'r') as f:
|
||||
dic_split = json.load(f)
|
||||
|
||||
return dic_split
|
||||
|
||||
|
||||
def select_categories(cat):
|
||||
"""
|
||||
Choose the categories to extract annotations from
|
||||
"""
|
||||
assert cat in ['person', 'all', 'car', 'cyclist']
|
||||
|
||||
if cat == 'person':
|
||||
categories = ['human.pedestrian']
|
||||
elif cat == 'all':
|
||||
categories = ['human.pedestrian', 'vehicle.bicycle', 'vehicle.motorcycle']
|
||||
elif cat == 'cyclist':
|
||||
categories = ['vehicle.bicycle']
|
||||
elif cat == 'car':
|
||||
categories = ['vehicle']
|
||||
return categories
|
||||
|
||||
|
||||
def update_with_tokens(dict_gt, nusc, token_sd):
|
||||
"""
|
||||
Update with tokens corresponding to the token_sd
|
||||
"""
|
||||
|
||||
table_sample_data = nusc.get('sample_data', token_sd) # Extract the whole record to get the sample token
|
||||
token_sample = table_sample_data['sample_token'] # Extract the sample_token from the table
|
||||
table_sample = nusc.get('sample', token_sample) # Get the record of the sample
|
||||
token_scene = table_sample['scene_token']
|
||||
dict_gt['token_sample_data'] = token_sd
|
||||
dict_gt['token_sample'] = token_sample
|
||||
dict_gt['token_scene'] = token_scene
|
||||
return dict_gt
|
||||
|
||||
|
||||
def update_with_box(dict_gt, box):
|
||||
|
||||
bbox = np.zeros(7, )
|
||||
flag_child = False
|
||||
|
||||
# Save the 3D bbox
|
||||
bbox[0:3] = box.center
|
||||
bbox[3:6] = box.wlh
|
||||
bbox[6] = box.orientation.degrees
|
||||
dict_gt['boxes'].append(bbox.tolist()) # Save as list to be serializable by a json file
|
||||
if box.name == 'human.pedestrian.child':
|
||||
flag_child = True
|
||||
|
||||
return dict_gt, flag_child
|
||||
198
monstereo/utils/stereo.py
Normal file
198
monstereo/utils/stereo.py
Normal file
@ -0,0 +1,198 @@
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
BF = 0.54 * 721
|
||||
z_min = 4
|
||||
z_max = 60
|
||||
D_MIN = BF / z_max
|
||||
D_MAX = BF / z_min
|
||||
|
||||
|
||||
def extract_stereo_matches(keypoint, keypoints_r, zz, phase='train', seed=0, method=None):
|
||||
"""Return binaries representing the match between the pose in the left and the ones in the right"""
|
||||
|
||||
stereo_matches = []
|
||||
cnt_ambiguous = 0
|
||||
if method == 'mask':
|
||||
conf_min = 0.1
|
||||
else:
|
||||
conf_min = 0.2
|
||||
avgs_x_l, avgs_x_r, disparities_x, disparities_y = average_locations(keypoint, keypoints_r, conf_min=conf_min)
|
||||
avg_disparities = [abs(float(l) - BF / zz - float(r)) for l, r in zip(avgs_x_l, avgs_x_r)]
|
||||
idx_matches = np.argsort(avg_disparities)
|
||||
# error_max_stereo = 1 * 0.0028 * zz**2 + 0.2 # 2m at 20 meters of depth + 20 cm of offset
|
||||
error_max_stereo = 0.2 * zz + 0.2 # 2m at 20 meters of depth + 20 cm of offset
|
||||
error_min_mono = 0.25 * zz + 0.2
|
||||
error_max_mono = 1 * zz + 0.5
|
||||
used = []
|
||||
# Add positive and negative samples
|
||||
for idx, idx_match in enumerate(idx_matches):
|
||||
match = avg_disparities[idx_match]
|
||||
zz_stereo, flag = disparity_to_depth(match + BF / zz)
|
||||
|
||||
# Conditions to accept stereo match
|
||||
conditions = (idx == 0
|
||||
and match < depth_to_pixel_error(zz, depth_error=error_max_stereo)
|
||||
and flag
|
||||
and verify_stereo(zz_stereo, zz, disparities_x[idx_match], disparities_y[idx_match]))
|
||||
|
||||
# Positive matches
|
||||
if conditions:
|
||||
stereo_matches.append((idx_match, 1))
|
||||
# Ambiguous
|
||||
elif match < depth_to_pixel_error(zz, depth_error=error_min_mono):
|
||||
cnt_ambiguous += 1
|
||||
|
||||
# Disparity-range negative
|
||||
# elif D_MIN < match + BF / zz < D_MAX:
|
||||
# stereo_matches.append((idx_match, 0))
|
||||
|
||||
elif phase == 'val' \
|
||||
and match < depth_to_pixel_error(zz, depth_error=error_max_mono) \
|
||||
and not stereo_matches\
|
||||
and zz < 40:
|
||||
stereo_matches.append((idx_match, 0))
|
||||
|
||||
# # Hard-negative for training
|
||||
elif phase == 'train' \
|
||||
and match < depth_to_pixel_error(zz, depth_error=error_max_mono) \
|
||||
and len(stereo_matches) < 3:
|
||||
stereo_matches.append((idx_match, 0))
|
||||
|
||||
# # Easy-negative
|
||||
elif phase == 'train' \
|
||||
and len(stereo_matches) < 3:
|
||||
np.random.seed(seed + idx)
|
||||
num = np.random.randint(idx, len(idx_matches))
|
||||
if idx_matches[num] not in used:
|
||||
stereo_matches.append((idx_matches[num], 0))
|
||||
|
||||
# elif len(stereo_matches) < 1:
|
||||
# stereo_matches.append((idx_match, 0))
|
||||
|
||||
# Easy-negative
|
||||
# elif len(idx_matches) > len(stereo_matches):
|
||||
# stereo_matches.append((idx_matches[-1], 0))
|
||||
# break # matches are ordered
|
||||
else:
|
||||
break
|
||||
used.append(idx_match)
|
||||
|
||||
# Make sure each left has at least a negative match
|
||||
# if not stereo_matches:
|
||||
# stereo_matches.append((idx_matches[0], 0))
|
||||
return stereo_matches, cnt_ambiguous
|
||||
|
||||
|
||||
def depth_to_pixel_error(zz, depth_error=1):
|
||||
"""
|
||||
Calculate the pixel error at a certain depth due to depth error according to:
|
||||
e_d = b * f * e_z / (z**2)
|
||||
"""
|
||||
e_d = BF * depth_error / (zz**2)
|
||||
return e_d
|
||||
|
||||
|
||||
def mask_joint_disparity(keypoints, keypoints_r):
|
||||
"""filter joints based on confidence and interquartile range of the distribution"""
|
||||
# TODO Merge with average location
|
||||
CONF_MIN = 0.3
|
||||
with warnings.catch_warnings() and np.errstate(invalid='ignore'):
|
||||
disparity_x_mask = np.empty((keypoints.shape[0], keypoints_r.shape[0], 17))
|
||||
disparity_y_mask = np.empty((keypoints.shape[0], keypoints_r.shape[0], 17))
|
||||
avg_disparity = np.empty((keypoints.shape[0], keypoints_r.shape[0]))
|
||||
|
||||
for idx, kps in enumerate(keypoints):
|
||||
disparity_x = kps[0, :] - keypoints_r[:, 0, :]
|
||||
disparity_y = kps[1, :] - keypoints_r[:, 1, :]
|
||||
|
||||
# Mask for low confidence
|
||||
mask_conf_left = kps[2, :] > CONF_MIN
|
||||
mask_conf_right = keypoints_r[:, 2, :] > CONF_MIN
|
||||
mask_conf = mask_conf_left & mask_conf_right
|
||||
disparity_x_conf = np.where(mask_conf, disparity_x, np.nan)
|
||||
disparity_y_conf = np.where(mask_conf, disparity_y, np.nan)
|
||||
|
||||
# Mask outliers using iqr
|
||||
mask_outlier = interquartile_mask(disparity_x_conf)
|
||||
x_mask_row = np.where(mask_outlier, disparity_x_conf, np.nan)
|
||||
y_mask_row = np.where(mask_outlier, disparity_y_conf, np.nan)
|
||||
avg_row = np.nanmedian(x_mask_row, axis=1) # ignore the nan
|
||||
|
||||
# Append
|
||||
disparity_x_mask[idx] = x_mask_row
|
||||
disparity_y_mask[idx] = y_mask_row
|
||||
avg_disparity[idx] = avg_row
|
||||
|
||||
return avg_disparity, disparity_x_mask, disparity_y_mask
|
||||
|
||||
|
||||
def average_locations(keypoint, keypoints_r, conf_min=0.2):
|
||||
"""
|
||||
Extract absolute average location of keypoints
|
||||
INPUT: arrays of (1, 3, 17) & (m,3,17)
|
||||
OUTPUT: 2 arrays of (m).
|
||||
The left keypoint will have different absolute positions based on the right keypoints they are paired with
|
||||
"""
|
||||
keypoint, keypoints_r = np.array(keypoint), np.array(keypoints_r)
|
||||
assert keypoints_r.shape[0] > 0, "No right keypoints"
|
||||
with warnings.catch_warnings() and np.errstate(invalid='ignore'):
|
||||
|
||||
# Mask by confidence
|
||||
mask_l_conf = keypoint[0, 2, :] > conf_min
|
||||
mask_r_conf = keypoints_r[:, 2, :] > conf_min
|
||||
abs_x_l = np.where(mask_l_conf, keypoint[0, 0:1, :], np.nan)
|
||||
abs_x_r = np.where(mask_r_conf, keypoints_r[:, 0, :], np.nan)
|
||||
|
||||
# Mask by iqr
|
||||
mask_l_iqr = interquartile_mask(abs_x_l)
|
||||
mask_r_iqr = interquartile_mask(abs_x_r)
|
||||
|
||||
# Combine masks
|
||||
mask = mask_l_iqr & mask_r_iqr
|
||||
|
||||
# Compute absolute locations and relative disparities
|
||||
x_l = np.where(mask, abs_x_l, np.nan)
|
||||
x_r = np.where(mask, abs_x_r, np.nan)
|
||||
x_disp = x_l - x_r
|
||||
y_disp = np.where(mask, keypoint[0, 1, :] - keypoints_r[:, 1, :], np.nan)
|
||||
avgs_x_l = np.nanmedian(x_l, axis=1)
|
||||
avgs_x_r = np.nanmedian(x_r, axis=1)
|
||||
|
||||
return avgs_x_l, avgs_x_r, x_disp, y_disp
|
||||
|
||||
|
||||
def interquartile_mask(distribution):
|
||||
quartile_1, quartile_3 = np.nanpercentile(distribution, [25, 75], axis=1)
|
||||
iqr = quartile_3 - quartile_1
|
||||
lower_bound = quartile_1 - (iqr * 1.5)
|
||||
upper_bound = quartile_3 + (iqr * 1.5)
|
||||
return (distribution < upper_bound.reshape(-1, 1)) & (distribution > lower_bound.reshape(-1, 1))
|
||||
|
||||
|
||||
def disparity_to_depth(avg_disparity):
|
||||
|
||||
try:
|
||||
zz_stereo = 0.54 * 721. / float(avg_disparity)
|
||||
flag = True
|
||||
except (ZeroDivisionError, ValueError): # All nan-slices or zero division
|
||||
zz_stereo = np.nan
|
||||
flag = False
|
||||
return zz_stereo, flag
|
||||
|
||||
|
||||
def verify_stereo(zz_stereo, zz_mono, disparity_x, disparity_y):
|
||||
"""Verify disparities based on coefficient of variation, maximum y difference and z difference wrt monoloco"""
|
||||
|
||||
# COV_MIN = 0.1
|
||||
y_max_difference = (80 / zz_mono)
|
||||
z_max_difference = 1 * zz_mono
|
||||
|
||||
cov = float(np.nanstd(disparity_x) / np.abs(np.nanmean(disparity_x))) # Coefficient of variation
|
||||
avg_disparity_y = np.nanmedian(disparity_y)
|
||||
|
||||
return abs(zz_stereo - zz_mono) < z_max_difference and avg_disparity_y < y_max_difference and 1 < zz_stereo < 80
|
||||
# cov < COV_MIN and \
|
||||
3
monstereo/visuals/__init__.py
Normal file
3
monstereo/visuals/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
|
||||
from .printer import Printer
|
||||
from .figures import show_results, show_spread, show_task_error, show_box_plot
|
||||
311
monstereo/visuals/figures.py
Normal file
311
monstereo/visuals/figures.py
Normal file
@ -0,0 +1,311 @@
|
||||
# pylint: disable=R0915
|
||||
|
||||
import math
|
||||
import itertools
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Ellipse
|
||||
|
||||
from ..utils import get_task_error, get_pixel_error
|
||||
|
||||
|
||||
def show_results(dic_stats, clusters, show=False, save=False, stereo=True):
|
||||
"""
|
||||
Visualize error as function of the distance and compare it with target errors based on human height analyses
|
||||
"""
|
||||
|
||||
dir_out = 'docs'
|
||||
phase = 'test'
|
||||
x_min = 3
|
||||
x_max = 42
|
||||
y_min = 0
|
||||
# y_max = 2.2
|
||||
y_max = 3.5 if stereo else 5.2
|
||||
|
||||
xx = np.linspace(x_min, x_max, 100)
|
||||
excl_clusters = ['all', 'easy', 'moderate', 'hard']
|
||||
clusters = [clst for clst in clusters if clst not in excl_clusters]
|
||||
plt.figure(0)
|
||||
styles = printing_styles(stereo)
|
||||
for idx_style, style in enumerate(styles.items()):
|
||||
plt.figure(idx_style)
|
||||
plt.grid(linewidth=0.2)
|
||||
plt.xlim(x_min, x_max)
|
||||
plt.ylim(y_min, y_max)
|
||||
plt.xlabel("Ground-truth distance [m]")
|
||||
plt.ylabel("Average localization error (ALE) [m]")
|
||||
for idx, method in enumerate(styles['methods']):
|
||||
errs = [dic_stats[phase][method][clst]['mean'] for clst in clusters[:-1]] # last cluster only a bound
|
||||
cnts = [dic_stats[phase][method][clst]['cnt'] for clst in clusters[:-1]] # last cluster only a bound
|
||||
assert errs, "method %s empty" % method
|
||||
xxs = get_distances(clusters)
|
||||
|
||||
plt.plot(xxs, errs, marker=styles['mks'][idx], markersize=styles['mksizes'][idx],
|
||||
linewidth=styles['lws'][idx],
|
||||
label=styles['labels'][idx], linestyle=styles['lstyles'][idx], color=styles['colors'][idx])
|
||||
if method in ('monstereo', 'pseudo-lidar'):
|
||||
for i, x in enumerate(xxs):
|
||||
plt.text(x, errs[i], str(cnts[i]), fontsize=10)
|
||||
if not stereo:
|
||||
plt.plot(xx, get_task_error(xx), '--', label="Task error", color='lightgreen', linewidth=2.5)
|
||||
# if stereo:
|
||||
# yy_stereo = get_pixel_error(xx)
|
||||
# plt.plot(xx, yy_stereo, linewidth=1.4, color='k', label='Pixel error')
|
||||
|
||||
plt.legend(loc='upper left')
|
||||
if save:
|
||||
plt.tight_layout()
|
||||
mode = 'stereo' if stereo else 'mono'
|
||||
path_fig = os.path.join(dir_out, 'results_' + mode + '.png')
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of results " + mode + " saved in {}".format(path_fig))
|
||||
if show:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
def show_spread(dic_stats, clusters, show=False, save=False):
|
||||
"""Predicted confidence intervals and task error as a function of ground-truth distance"""
|
||||
|
||||
phase = 'test'
|
||||
dir_out = 'docs'
|
||||
excl_clusters = ['all', 'easy', 'moderate', 'hard']
|
||||
clusters = [clst for clst in clusters if clst not in excl_clusters]
|
||||
x_min = 3
|
||||
x_max = 42
|
||||
y_min = 0
|
||||
|
||||
for method in ('monoloco_pp', 'monstereo'):
|
||||
plt.figure(2)
|
||||
xxs = get_distances(clusters)
|
||||
bbs = np.array([dic_stats[phase][method][key]['std_ale'] for key in clusters[:-1]])
|
||||
if method == 'monoloco_pp':
|
||||
y_max = 5
|
||||
color = 'deepskyblue'
|
||||
epis = np.array([dic_stats[phase][method][key]['std_epi'] for key in clusters[:-1]])
|
||||
plt.plot(xxs, epis, marker='o', color='coral', label="Combined uncertainty (\u03C3)")
|
||||
else:
|
||||
y_max = 3.5
|
||||
color = 'b'
|
||||
plt.plot(xx, get_pixel_error(xx), linewidth=1.4, color='k', label='Pixel error')
|
||||
plt.plot(xxs, bbs, marker='s', color=color, label="Aleatoric uncertainty (b)")
|
||||
xx = np.linspace(x_min, x_max, 100)
|
||||
plt.plot(xx, get_task_error(xx), '--', label="Task error (monocular bound)", color='lightgreen', linewidth=2.5)
|
||||
|
||||
plt.xlabel("Ground-truth distance [m]")
|
||||
plt.ylabel("Uncertainty [m]")
|
||||
plt.xlim(x_min, x_max)
|
||||
plt.ylim(y_min, y_max)
|
||||
plt.grid(linewidth=0.2)
|
||||
plt.legend()
|
||||
if save:
|
||||
plt.tight_layout()
|
||||
path_fig = os.path.join(dir_out, 'spread_' + method + '.png')
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of confidence intervals saved in {}".format(path_fig))
|
||||
if show:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
def show_task_error(show, save):
|
||||
"""Task error figure"""
|
||||
plt.figure(3)
|
||||
dir_out = 'docs'
|
||||
xx = np.linspace(0.1, 50, 100)
|
||||
mu_men = 178
|
||||
mu_women = 165
|
||||
mu_child_m = 164
|
||||
mu_child_w = 156
|
||||
mm_gmm, mm_male, mm_female = calculate_gmm()
|
||||
mm_young_male = mm_male + (mu_men - mu_child_m) / mu_men
|
||||
mm_young_female = mm_female + (mu_women - mu_child_w) / mu_women
|
||||
yy_male = target_error(xx, mm_male)
|
||||
yy_female = target_error(xx, mm_female)
|
||||
yy_young_male = target_error(xx, mm_young_male)
|
||||
yy_young_female = target_error(xx, mm_young_female)
|
||||
yy_gender = target_error(xx, mm_gmm)
|
||||
yy_stereo = get_pixel_error(xx)
|
||||
plt.grid(linewidth=0.3)
|
||||
plt.plot(xx, yy_young_male, linestyle='dotted', linewidth=2.1, color='b', label='Adult/young male')
|
||||
plt.plot(xx, yy_young_female, linestyle='dotted', linewidth=2.1, color='darkorange', label='Adult/young female')
|
||||
plt.plot(xx, yy_gender, '--', color='lightgreen', linewidth=2.8, label='Generic adult (task error)')
|
||||
plt.plot(xx, yy_female, '-.', linewidth=1.7, color='darkorange', label='Adult female')
|
||||
plt.plot(xx, yy_male, '-.', linewidth=1.7, color='b', label='Adult male')
|
||||
plt.plot(xx, yy_stereo, linewidth=1.7, color='k', label='Pixel error')
|
||||
plt.xlim(np.min(xx), np.max(xx))
|
||||
plt.xlabel("Ground-truth distance from the camera $d_{gt}$ [m]")
|
||||
plt.ylabel("Localization error $\hat{e}$ due to human height variation [m]") # pylint: disable=W1401
|
||||
plt.legend(loc=(0.01, 0.55)) # Location from 0 to 1 from lower left
|
||||
if save:
|
||||
path_fig = os.path.join(dir_out, 'task_error.png')
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of task error saved in {}".format(path_fig))
|
||||
if show:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
def show_method(save):
|
||||
""" method figure"""
|
||||
dir_out = 'docs'
|
||||
std_1 = 0.75
|
||||
fig = plt.figure(1)
|
||||
ax = fig.add_subplot(1, 1, 1)
|
||||
ell_3 = Ellipse((0, 2), width=std_1 * 2, height=0.3, angle=-90, color='b', fill=False, linewidth=2.5)
|
||||
ell_4 = Ellipse((0, 2), width=std_1 * 3, height=0.3, angle=-90, color='r', fill=False,
|
||||
linestyle='dashed', linewidth=2.5)
|
||||
ax.add_patch(ell_4)
|
||||
ax.add_patch(ell_3)
|
||||
plt.plot(0, 2, marker='o', color='skyblue', markersize=9)
|
||||
plt.plot([0, 3], [0, 4], 'k--')
|
||||
plt.plot([0, -3], [0, 4], 'k--')
|
||||
plt.xlim(-3, 3)
|
||||
plt.ylim(0, 3.5)
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
plt.xlabel('X [m]')
|
||||
plt.ylabel('Z [m]')
|
||||
if save:
|
||||
path_fig = os.path.join(dir_out, 'output_method.png')
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of method saved in {}".format(path_fig))
|
||||
|
||||
|
||||
def show_box_plot(dic_errors, clusters, show=False, save=False):
|
||||
import pandas as pd
|
||||
dir_out = 'docs'
|
||||
excl_clusters = ['all', 'easy', 'moderate', 'hard']
|
||||
clusters = [int(clst) for clst in clusters if clst not in excl_clusters]
|
||||
methods = ('monstereo', 'pseudo-lidar', '3dop', 'monoloco')
|
||||
y_min = 0
|
||||
y_max = 25 # 18 for the other
|
||||
xxs = get_distances(clusters)
|
||||
labels = [str(xx) for xx in xxs]
|
||||
for idx, method in enumerate(methods):
|
||||
df = pd.DataFrame([dic_errors[method][str(clst)] for clst in clusters[:-1]]).T
|
||||
df.columns = labels
|
||||
|
||||
plt.figure(idx)
|
||||
_ = df.boxplot()
|
||||
name = 'MonStereo' if method == 'monstereo' else method
|
||||
plt.title(name)
|
||||
plt.ylabel('Average localization error (ALE) [m]')
|
||||
plt.xlabel('Ground-truth distance [m]')
|
||||
plt.ylim(y_min, y_max)
|
||||
|
||||
if save:
|
||||
path_fig = os.path.join(dir_out, 'box_plot_' + name + '.png')
|
||||
plt.tight_layout()
|
||||
plt.savefig(path_fig)
|
||||
print("Figure of box plot saved in {}".format(path_fig))
|
||||
if show:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
def target_error(xx, mm):
|
||||
return mm * xx
|
||||
|
||||
|
||||
def calculate_gmm():
|
||||
dist_gmm, dist_male, dist_female = height_distributions()
|
||||
# get_percentile(dist_gmm)
|
||||
mu_gmm = np.mean(dist_gmm)
|
||||
mm_gmm = np.mean(np.abs(1 - mu_gmm / dist_gmm))
|
||||
mm_male = np.mean(np.abs(1 - np.mean(dist_male) / dist_male))
|
||||
mm_female = np.mean(np.abs(1 - np.mean(dist_female) / dist_female))
|
||||
|
||||
print("Mean of GMM distribution: {:.4f}".format(mu_gmm))
|
||||
print("coefficient for gmm: {:.4f}".format(mm_gmm))
|
||||
print("coefficient for men: {:.4f}".format(mm_male))
|
||||
print("coefficient for women: {:.4f}".format(mm_female))
|
||||
return mm_gmm, mm_male, mm_female
|
||||
|
||||
|
||||
def get_confidence(xx, zz, std):
|
||||
theta = math.atan2(zz, xx)
|
||||
|
||||
delta_x = std * math.cos(theta)
|
||||
delta_z = std * math.sin(theta)
|
||||
return (xx - delta_x, xx + delta_x), (zz - delta_z, zz + delta_z)
|
||||
|
||||
|
||||
def get_distances(clusters):
|
||||
"""Extract distances as intermediate values between 2 clusters"""
|
||||
distances = []
|
||||
for idx, _ in enumerate(clusters[:-1]):
|
||||
clst_0 = float(clusters[idx])
|
||||
clst_1 = float(clusters[idx + 1])
|
||||
distances.append((clst_1 - clst_0) / 2 + clst_0)
|
||||
return tuple(distances)
|
||||
|
||||
|
||||
def get_confidence_points(confidences, distances, errors):
|
||||
confidence_points = []
|
||||
distance_points = []
|
||||
for idx, dd in enumerate(distances):
|
||||
conf_perc = confidences[idx]
|
||||
confidence_points.append(errors[idx] + conf_perc)
|
||||
confidence_points.append(errors[idx] - conf_perc)
|
||||
distance_points.append(dd)
|
||||
distance_points.append(dd)
|
||||
|
||||
return distance_points, confidence_points
|
||||
|
||||
|
||||
def height_distributions():
|
||||
mu_men = 178
|
||||
std_men = 7
|
||||
mu_women = 165
|
||||
std_women = 7
|
||||
dist_men = np.random.normal(mu_men, std_men, int(1e7))
|
||||
dist_women = np.random.normal(mu_women, std_women, int(1e7))
|
||||
|
||||
dist_gmm = np.concatenate((dist_men, dist_women))
|
||||
return dist_gmm, dist_men, dist_women
|
||||
|
||||
|
||||
def expandgrid(*itrs):
|
||||
mm = 0
|
||||
combinations = list(itertools.product(*itrs))
|
||||
|
||||
for h_i, h_gt in combinations:
|
||||
mm += abs(float(1 - h_i / h_gt))
|
||||
|
||||
mm /= len(combinations)
|
||||
|
||||
return combinations
|
||||
|
||||
|
||||
def get_percentile(dist_gmm):
|
||||
dd_gt = 1000
|
||||
mu_gmm = np.mean(dist_gmm)
|
||||
dist_d = dd_gt * mu_gmm / dist_gmm
|
||||
perc_d, _ = np.nanpercentile(dist_d, [18.5, 81.5]) # Laplace bi => 63%
|
||||
perc_d2, _ = np.nanpercentile(dist_d, [23, 77])
|
||||
mu_d = np.mean(dist_d)
|
||||
# mm_bi = (mu_d - perc_d) / mu_d
|
||||
# mm_test = (mu_d - perc_d2) / mu_d
|
||||
# mad_d = np.mean(np.abs(dist_d - mu_d))
|
||||
|
||||
|
||||
def printing_styles(stereo):
|
||||
if stereo:
|
||||
style = {"labels": ['3DOP', 'PSF', 'MonoLoco', 'MonoPSR', 'Pseudo-Lidar', 'Our MonStereo'],
|
||||
"methods": ['3dop', 'psf', 'monoloco', 'monopsr', 'pseudo-lidar', 'monstereo'],
|
||||
"mks": ['s', 'p', 'o', 'v', '*', '^'],
|
||||
"mksizes": [6, 6, 6, 6, 6, 6], "lws": [1.2, 1.2, 1.2, 1.2, 1.3, 1.5],
|
||||
"colors": ['gold', 'skyblue', 'darkgreen', 'pink', 'darkorange', 'b'],
|
||||
"lstyles": ['solid', 'solid', 'dashed', 'dashed', 'solid', 'solid']}
|
||||
else:
|
||||
style = {"labels": ['Mono3D', 'Geometric Baseline', 'MonoPSR', '3DOP (stereo)', 'MonoLoco', 'Monoloco++'],
|
||||
"methods": ['m3d', 'geometric', 'monopsr', '3dop', 'monoloco', 'monoloco_pp'],
|
||||
"mks": ['*', '^', 'p', '.', 's', 'o', 'o'],
|
||||
"mksizes": [6, 6, 6, 6, 6, 6], "lws": [1.5, 1.5, 1.5, 1.5, 1.5, 2.2],
|
||||
"colors": ['r', 'purple', 'olive', 'darkorange', 'b', 'darkblue'],
|
||||
"lstyles": ['solid', 'solid', 'solid', 'dashdot', 'solid', 'solid', ]}
|
||||
|
||||
return style
|
||||
334
monstereo/visuals/pifpaf_show.py
Normal file
334
monstereo/visuals/pifpaf_show.py
Normal file
@ -0,0 +1,334 @@
|
||||
from contextlib import contextmanager
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
try:
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy.ndimage as ndimage
|
||||
except ImportError:
|
||||
matplotlib = None
|
||||
plt = None
|
||||
ndimage = None
|
||||
|
||||
|
||||
COCO_PERSON_SKELETON = [
|
||||
[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13],
|
||||
[6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3], [1, 2], [1, 3],
|
||||
[2, 4], [3, 5], [4, 6], [5, 7]]
|
||||
|
||||
|
||||
@contextmanager
|
||||
def canvas(fig_file=None, show=True, **kwargs):
|
||||
if 'figsize' not in kwargs:
|
||||
# kwargs['figsize'] = (15, 8)
|
||||
kwargs['figsize'] = (10, 6)
|
||||
fig, ax = plt.subplots(**kwargs)
|
||||
|
||||
yield ax
|
||||
|
||||
fig.set_tight_layout(True)
|
||||
if fig_file:
|
||||
fig.savefig(fig_file, dpi=200) # , bbox_inches='tight')
|
||||
if show:
|
||||
plt.show()
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def image_canvas(image, fig_file=None, show=True, dpi_factor=1.0, fig_width=10.0, **kwargs):
|
||||
if 'figsize' not in kwargs:
|
||||
kwargs['figsize'] = (fig_width, fig_width * image.shape[0] / image.shape[1])
|
||||
|
||||
fig = plt.figure(**kwargs)
|
||||
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
|
||||
ax.set_axis_off()
|
||||
ax.set_xlim(0, image.shape[1])
|
||||
ax.set_ylim(image.shape[0], 0)
|
||||
fig.add_axes(ax)
|
||||
image_2 = ndimage.gaussian_filter(image, sigma=2.5)
|
||||
ax.imshow(image_2, alpha=0.4)
|
||||
|
||||
yield ax
|
||||
|
||||
if fig_file:
|
||||
fig.savefig(fig_file, dpi=image.shape[1] / kwargs['figsize'][0] * dpi_factor)
|
||||
print('keypoints image saved')
|
||||
if show:
|
||||
plt.show()
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
def load_image(path, scale=1.0):
|
||||
with open(path, 'rb') as f:
|
||||
image = Image.open(f).convert('RGB')
|
||||
image = np.asarray(image) * scale / 255.0
|
||||
return image
|
||||
|
||||
|
||||
class KeypointPainter(object):
|
||||
def __init__(self, *,
|
||||
skeleton=None,
|
||||
xy_scale=1.0, highlight=None, highlight_invisible=False,
|
||||
show_box=True, linewidth=2, markersize=3,
|
||||
color_connections=False,
|
||||
solid_threshold=0.5):
|
||||
self.skeleton = skeleton or COCO_PERSON_SKELETON
|
||||
self.xy_scale = xy_scale
|
||||
self.highlight = highlight
|
||||
self.highlight_invisible = highlight_invisible
|
||||
self.show_box = show_box
|
||||
self.linewidth = linewidth
|
||||
self.markersize = markersize
|
||||
self.color_connections = color_connections
|
||||
self.solid_threshold = solid_threshold
|
||||
self.dashed_threshold = 0.1 # Patch to still allow force complete pose (set to zero to resume original)
|
||||
|
||||
def _draw_skeleton(self, ax, x, y, v, *, color=None):
|
||||
if not np.any(v > 0):
|
||||
return
|
||||
|
||||
if self.skeleton is not None:
|
||||
for ci, connection in enumerate(np.array(self.skeleton) - 1):
|
||||
c = color
|
||||
if self.color_connections:
|
||||
c = matplotlib.cm.get_cmap('tab20')(ci / len(self.skeleton))
|
||||
if np.all(v[connection] > self.dashed_threshold):
|
||||
ax.plot(x[connection], y[connection],
|
||||
linewidth=self.linewidth, color=c,
|
||||
linestyle='dashed', dash_capstyle='round')
|
||||
if np.all(v[connection] > self.solid_threshold):
|
||||
ax.plot(x[connection], y[connection],
|
||||
linewidth=self.linewidth, color=c, solid_capstyle='round')
|
||||
|
||||
# highlight invisible keypoints
|
||||
inv_color = 'k' if self.highlight_invisible else color
|
||||
|
||||
ax.plot(x[v > self.dashed_threshold], y[v > self.dashed_threshold],
|
||||
'o', markersize=self.markersize,
|
||||
markerfacecolor=color, markeredgecolor=inv_color, markeredgewidth=2)
|
||||
ax.plot(x[v > self.solid_threshold], y[v > self.solid_threshold],
|
||||
'o', markersize=self.markersize,
|
||||
markerfacecolor=color, markeredgecolor=color, markeredgewidth=2)
|
||||
|
||||
if self.highlight is not None:
|
||||
v_highlight = v[self.highlight]
|
||||
ax.plot(x[self.highlight][v_highlight > 0],
|
||||
y[self.highlight][v_highlight > 0],
|
||||
'o', markersize=self.markersize*2, markeredgewidth=2,
|
||||
markerfacecolor=color, markeredgecolor=color)
|
||||
|
||||
@staticmethod
|
||||
def _draw_box(ax, x, y, v, color, score=None):
|
||||
if not np.any(v > 0):
|
||||
return
|
||||
|
||||
# keypoint bounding box
|
||||
x1, x2 = np.min(x[v > 0]), np.max(x[v > 0])
|
||||
y1, y2 = np.min(y[v > 0]), np.max(y[v > 0])
|
||||
if x2 - x1 < 5.0:
|
||||
x1 -= 2.0
|
||||
x2 += 2.0
|
||||
if y2 - y1 < 5.0:
|
||||
y1 -= 2.0
|
||||
y2 += 2.0
|
||||
ax.add_patch(
|
||||
matplotlib.patches.Rectangle(
|
||||
(x1, y1), x2 - x1, y2 - y1, fill=False, color=color))
|
||||
|
||||
if score:
|
||||
ax.text(x1, y1, '{:.4f}'.format(score), fontsize=8, color=color)
|
||||
|
||||
@staticmethod
|
||||
def _draw_text(ax, x, y, v, text, color):
|
||||
if not np.any(v > 0):
|
||||
return
|
||||
|
||||
# keypoint bounding box
|
||||
x1, x2 = np.min(x[v > 0]), np.max(x[v > 0])
|
||||
y1, y2 = np.min(y[v > 0]), np.max(y[v > 0])
|
||||
if x2 - x1 < 5.0:
|
||||
x1 -= 2.0
|
||||
x2 += 2.0
|
||||
if y2 - y1 < 5.0:
|
||||
y1 -= 2.0
|
||||
y2 += 2.0
|
||||
|
||||
ax.text(x1 + 2, y1 - 2, text, fontsize=8,
|
||||
color='white', bbox={'facecolor': color, 'alpha': 0.5, 'linewidth': 0})
|
||||
|
||||
@staticmethod
|
||||
def _draw_scales(ax, xs, ys, vs, color, scales):
|
||||
for x, y, v, scale in zip(xs, ys, vs, scales):
|
||||
if v == 0.0:
|
||||
continue
|
||||
ax.add_patch(
|
||||
matplotlib.patches.Rectangle(
|
||||
(x - scale, y - scale), 2 * scale, 2 * scale, fill=False, color=color))
|
||||
|
||||
def keypoints(self, ax, keypoint_sets, *, scores=None, color=None, colors=None, texts=None):
|
||||
if keypoint_sets is None:
|
||||
return
|
||||
|
||||
if color is None and self.color_connections:
|
||||
color = 'white'
|
||||
if color is None and colors is None:
|
||||
colors = range(len(keypoint_sets))
|
||||
|
||||
for i, kps in enumerate(np.asarray(keypoint_sets)):
|
||||
assert kps.shape[1] == 3
|
||||
x = kps[:, 0] * self.xy_scale
|
||||
y = kps[:, 1] * self.xy_scale
|
||||
v = kps[:, 2]
|
||||
|
||||
if colors is not None:
|
||||
color = colors[i]
|
||||
|
||||
if isinstance(color, (int, np.integer)):
|
||||
color = matplotlib.cm.get_cmap('tab20')((color % 20 + 0.05) / 20)
|
||||
|
||||
self._draw_skeleton(ax, x, y, v, color=color)
|
||||
if self.show_box:
|
||||
score = scores[i] if scores is not None else None
|
||||
self._draw_box(ax, x, y, v, color, score)
|
||||
|
||||
if texts is not None:
|
||||
self._draw_text(ax, x, y, v, texts[i], color)
|
||||
|
||||
|
||||
def annotations(self, ax, annotations, *,
|
||||
color=None, colors=None, texts=None):
|
||||
if annotations is None:
|
||||
return
|
||||
|
||||
if color is None and self.color_connections:
|
||||
color = 'white'
|
||||
if color is None and colors is None:
|
||||
colors = range(len(annotations))
|
||||
|
||||
for i, ann in enumerate(annotations):
|
||||
if colors is not None:
|
||||
color = colors[i]
|
||||
|
||||
text = texts[i] if texts is not None else None
|
||||
self.annotation(ax, ann, color=color, text=text)
|
||||
|
||||
def annotation(self, ax, ann, *, color, text=None):
|
||||
if isinstance(color, (int, np.integer)):
|
||||
color = matplotlib.cm.get_cmap('tab20')((color % 20 + 0.05) / 20)
|
||||
|
||||
kps = ann.data
|
||||
assert kps.shape[1] == 3
|
||||
x = kps[:, 0] * self.xy_scale
|
||||
y = kps[:, 1] * self.xy_scale
|
||||
v = kps[:, 2]
|
||||
|
||||
self._draw_skeleton(ax, x, y, v, color=color)
|
||||
|
||||
if ann.joint_scales is not None:
|
||||
self._draw_scales(ax, x, y, v, color, ann.joint_scales)
|
||||
|
||||
if self.show_box:
|
||||
self._draw_box(ax, x, y, v, color, ann.score())
|
||||
|
||||
if text is not None:
|
||||
self._draw_text(ax, x, y, v, text, color)
|
||||
|
||||
|
||||
def quiver(ax, vector_field, intensity_field=None, step=1, threshold=0.5,
|
||||
xy_scale=1.0, uv_is_offset=False,
|
||||
reg_uncertainty=None, **kwargs):
|
||||
x, y, u, v, c, r = [], [], [], [], [], []
|
||||
for j in range(0, vector_field.shape[1], step):
|
||||
for i in range(0, vector_field.shape[2], step):
|
||||
if intensity_field is not None and intensity_field[j, i] < threshold:
|
||||
continue
|
||||
x.append(i * xy_scale)
|
||||
y.append(j * xy_scale)
|
||||
u.append(vector_field[0, j, i] * xy_scale)
|
||||
v.append(vector_field[1, j, i] * xy_scale)
|
||||
c.append(intensity_field[j, i] if intensity_field is not None else 1.0)
|
||||
r.append(reg_uncertainty[j, i] * xy_scale if reg_uncertainty is not None else None)
|
||||
x = np.array(x)
|
||||
y = np.array(y)
|
||||
u = np.array(u)
|
||||
v = np.array(v)
|
||||
c = np.array(c)
|
||||
r = np.array(r)
|
||||
s = np.argsort(c)
|
||||
if uv_is_offset:
|
||||
u -= x
|
||||
v -= y
|
||||
|
||||
for xx, yy, uu, vv, _, rr in zip(x, y, u, v, c, r):
|
||||
if not rr:
|
||||
continue
|
||||
circle = matplotlib.patches.Circle(
|
||||
(xx + uu, yy + vv), rr / 2.0, zorder=11, linewidth=1, alpha=1.0,
|
||||
fill=False, color='orange')
|
||||
ax.add_artist(circle)
|
||||
|
||||
return ax.quiver(x[s], y[s], u[s], v[s], c[s],
|
||||
angles='xy', scale_units='xy', scale=1, zOrder=10, **kwargs)
|
||||
|
||||
|
||||
def arrows(ax, fourd, xy_scale=1.0, threshold=0.0, **kwargs):
|
||||
mask = np.min(fourd[:, 2], axis=0) >= threshold
|
||||
fourd = fourd[:, :, mask]
|
||||
(x1, y1), (x2, y2) = fourd[:, :2, :] * xy_scale
|
||||
c = np.min(fourd[:, 2], axis=0)
|
||||
s = np.argsort(c)
|
||||
return ax.quiver(x1[s], y1[s], (x2 - x1)[s], (y2 - y1)[s], c[s],
|
||||
angles='xy', scale_units='xy', scale=1, zOrder=10, **kwargs)
|
||||
|
||||
|
||||
def boxes(ax, scalar_field, intensity_field=None, xy_scale=1.0, step=1, threshold=0.5,
|
||||
cmap='viridis_r', clim=(0.5, 1.0), **kwargs):
|
||||
x, y, s, c = [], [], [], []
|
||||
for j in range(0, scalar_field.shape[0], step):
|
||||
for i in range(0, scalar_field.shape[1], step):
|
||||
if intensity_field is not None and intensity_field[j, i] < threshold:
|
||||
continue
|
||||
x.append(i * xy_scale)
|
||||
y.append(j * xy_scale)
|
||||
s.append(scalar_field[j, i] * xy_scale)
|
||||
c.append(intensity_field[j, i] if intensity_field is not None else 1.0)
|
||||
|
||||
cmap = matplotlib.cm.get_cmap(cmap)
|
||||
cnorm = matplotlib.colors.Normalize(vmin=clim[0], vmax=clim[1])
|
||||
for xx, yy, ss, cc in zip(x, y, s, c):
|
||||
color = cmap(cnorm(cc))
|
||||
rectangle = matplotlib.patches.Rectangle(
|
||||
(xx - ss, yy - ss), ss * 2.0, ss * 2.0,
|
||||
color=color, zorder=10, linewidth=1, **kwargs)
|
||||
ax.add_artist(rectangle)
|
||||
|
||||
|
||||
def circles(ax, scalar_field, intensity_field=None, xy_scale=1.0, step=1, threshold=0.5,
|
||||
cmap='viridis_r', clim=(0.5, 1.0), **kwargs):
|
||||
x, y, s, c = [], [], [], []
|
||||
for j in range(0, scalar_field.shape[0], step):
|
||||
for i in range(0, scalar_field.shape[1], step):
|
||||
if intensity_field is not None and intensity_field[j, i] < threshold:
|
||||
continue
|
||||
x.append(i * xy_scale)
|
||||
y.append(j * xy_scale)
|
||||
s.append(scalar_field[j, i] * xy_scale)
|
||||
c.append(intensity_field[j, i] if intensity_field is not None else 1.0)
|
||||
|
||||
cmap = matplotlib.cm.get_cmap(cmap)
|
||||
cnorm = matplotlib.colors.Normalize(vmin=clim[0], vmax=clim[1])
|
||||
for xx, yy, ss, cc in zip(x, y, s, c):
|
||||
color = cmap(cnorm(cc))
|
||||
circle = matplotlib.patches.Circle(
|
||||
(xx, yy), ss,
|
||||
color=color, zorder=10, linewidth=1, **kwargs)
|
||||
ax.add_artist(circle)
|
||||
|
||||
|
||||
def white_screen(ax, alpha=0.9):
|
||||
ax.add_patch(
|
||||
plt.Rectangle((0, 0), 1, 1, transform=ax.transAxes, alpha=alpha,
|
||||
facecolor='white')
|
||||
)
|
||||
98
monstereo/visuals/plot_3d_box.py
Normal file
98
monstereo/visuals/plot_3d_box.py
Normal file
@ -0,0 +1,98 @@
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def correct_boxes(boxes, hwls, xyzs, yaws, path_calib):
|
||||
|
||||
with open(path_calib, "r") as ff:
|
||||
file = ff.readlines()
|
||||
p2_str = file[2].split()[1:]
|
||||
p2_list = [float(xx) for xx in p2_str]
|
||||
P = np.array(p2_list).reshape(3, 4)
|
||||
boxes_new = []
|
||||
for idx, box in enumerate(boxes):
|
||||
hwl = hwls[idx]
|
||||
xyz = xyzs[idx]
|
||||
yaw = yaws[idx]
|
||||
corners_2d, corners_3d = compute_box_3d(hwl, xyz, yaw, P)
|
||||
box_new = project_8p_to_4p(corners_2d).reshape(-1).tolist()
|
||||
boxes_new.append(box_new)
|
||||
return boxes_new
|
||||
|
||||
|
||||
def compute_box_3d(hwl, xyz, ry, P):
|
||||
""" Takes an object and a projection matrix (P) and projects the 3d
|
||||
bounding box into the image plane.
|
||||
Returns:
|
||||
corners_2d: (8,2) array in left image coord.
|
||||
corners_3d: (8,3) array in in rect camera coord.
|
||||
"""
|
||||
# compute rotational matrix around yaw axis
|
||||
R = roty(ry)
|
||||
|
||||
# 3d bounding box dimensions
|
||||
l = hwl[2]
|
||||
w = hwl[1]
|
||||
h = hwl[0]
|
||||
|
||||
# 3d bounding box corners
|
||||
x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
|
||||
y_corners = [0, 0, 0, 0, -h, -h, -h, -h]
|
||||
z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
|
||||
|
||||
# rotate and translate 3d bounding box
|
||||
corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
|
||||
# print corners_3d.shape
|
||||
corners_3d[0, :] = corners_3d[0, :] + xyz[0]
|
||||
corners_3d[1, :] = corners_3d[1, :] + xyz[1]
|
||||
corners_3d[2, :] = corners_3d[2, :] + xyz[2]
|
||||
# print 'cornsers_3d: ', corners_3d
|
||||
# only draw 3d bounding box for objs in front of the camera
|
||||
if np.any(corners_3d[2, :] < 0.1):
|
||||
corners_2d = None
|
||||
return corners_2d, np.transpose(corners_3d)
|
||||
|
||||
# project the 3d bounding box into the image plane
|
||||
corners_2d = project_to_image(np.transpose(corners_3d), P)
|
||||
# print 'corners_2d: ', corners_2d
|
||||
return corners_2d, np.transpose(corners_3d)
|
||||
|
||||
|
||||
|
||||
def roty(t):
|
||||
""" Rotation about the y-axis. """
|
||||
c = np.cos(t)
|
||||
s = np.sin(t)
|
||||
return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]])
|
||||
|
||||
|
||||
|
||||
def project_to_image(pts_3d, P):
|
||||
""" Project 3d points to image plane.
|
||||
Usage: pts_2d = projectToImage(pts_3d, P)
|
||||
input: pts_3d: nx3 matrix
|
||||
P: 3x4 projection matrix
|
||||
output: pts_2d: nx2 matrix
|
||||
P(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn)
|
||||
=> normalize projected_pts_2d(2xn)
|
||||
<=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3)
|
||||
=> normalize projected_pts_2d(nx2)
|
||||
"""
|
||||
n = pts_3d.shape[0]
|
||||
pts_3d_extend = np.hstack((pts_3d, np.ones((n, 1))))
|
||||
# print(('pts_3d_extend shape: ', pts_3d_extend.shape))
|
||||
pts_2d = np.dot(pts_3d_extend, np.transpose(P)) # nx3
|
||||
pts_2d[:, 0] /= pts_2d[:, 2]
|
||||
pts_2d[:, 1] /= pts_2d[:, 2]
|
||||
return pts_2d[:, 0:2]
|
||||
|
||||
|
||||
|
||||
def project_8p_to_4p(pts_2d):
|
||||
x0 = np.min(pts_2d[:, 0])
|
||||
x1 = np.max(pts_2d[:, 0])
|
||||
y0 = np.min(pts_2d[:, 1])
|
||||
y1 = np.max(pts_2d[:, 1])
|
||||
x0 = max(0, x0)
|
||||
y0 = max(0, y0)
|
||||
return np.array([x0, y0, x1, y1])
|
||||
330
monstereo/visuals/printer.py
Normal file
330
monstereo/visuals/printer.py
Normal file
@ -0,0 +1,330 @@
|
||||
"""
|
||||
Class for drawing frontal, bird-eye-view and combined figures
|
||||
"""
|
||||
# pylint: disable=attribute-defined-outside-init
|
||||
import math
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.cm as cm
|
||||
from matplotlib.patches import Ellipse, Circle, Rectangle
|
||||
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
||||
|
||||
from ..utils import pixel_to_camera, get_task_error
|
||||
|
||||
|
||||
class Printer:
|
||||
"""
|
||||
Print results on images: birds eye view and computed distance
|
||||
"""
|
||||
FONTSIZE_BV = 16
|
||||
FONTSIZE = 18
|
||||
TEXTCOLOR = 'darkorange'
|
||||
COLOR_KPS = 'yellow'
|
||||
|
||||
def __init__(self, image, output_path, kk, output_types, epistemic=False, z_max=30, fig_width=10):
|
||||
|
||||
self.im = image
|
||||
self.kk = kk
|
||||
self.output_types = output_types
|
||||
self.epistemic = epistemic
|
||||
self.z_max = z_max # To include ellipses in the image
|
||||
self.y_scale = 1
|
||||
self.width = self.im.size[0]
|
||||
self.height = self.im.size[1]
|
||||
self.fig_width = fig_width
|
||||
|
||||
# Define the output dir
|
||||
self.output_path = output_path
|
||||
self.cmap = cm.get_cmap('jet')
|
||||
self.extensions = []
|
||||
|
||||
# Define variables of the class to change for every image
|
||||
self.mpl_im0 = self.stds_ale = self.stds_epi = self.xx_gt = self.zz_gt = self.xx_pred = self.zz_pred =\
|
||||
self.dds_real = self.uv_centers = self.uv_shoulders = self.uv_kps = self.boxes = self.boxes_gt = \
|
||||
self.uv_camera = self.radius = self.auxs = None
|
||||
|
||||
def _process_results(self, dic_ann):
|
||||
# Include the vectors inside the interval given by z_max
|
||||
self.stds_ale = dic_ann['stds_ale']
|
||||
self.stds_epi = dic_ann['stds_epi']
|
||||
self.gt = dic_ann['gt'] # regulate ground-truth matching
|
||||
self.xx_gt = [xx[0] for xx in dic_ann['xyz_real']]
|
||||
self.xx_pred = [xx[0] for xx in dic_ann['xyz_pred']]
|
||||
|
||||
# Do not print instances outside z_max
|
||||
self.zz_gt = [xx[2] if xx[2] < self.z_max - self.stds_epi[idx] else 0
|
||||
for idx, xx in enumerate(dic_ann['xyz_real'])]
|
||||
self.zz_pred = [xx[2] if xx[2] < self.z_max - self.stds_epi[idx] else 0
|
||||
for idx, xx in enumerate(dic_ann['xyz_pred'])]
|
||||
|
||||
self.dds_real = dic_ann['dds_real']
|
||||
self.uv_shoulders = dic_ann['uv_shoulders']
|
||||
self.boxes = dic_ann['boxes']
|
||||
self.boxes_gt = dic_ann['boxes_gt']
|
||||
|
||||
self.uv_camera = (int(self.im.size[0] / 2), self.im.size[1])
|
||||
self.radius = 11 / 1600 * self.width
|
||||
if dic_ann['aux']:
|
||||
self.auxs = dic_ann['aux'] if dic_ann['aux'] else None
|
||||
|
||||
def factory_axes(self):
|
||||
"""Create axes for figures: front bird combined"""
|
||||
axes = []
|
||||
figures = []
|
||||
|
||||
# Initialize combined figure, resizing it for aesthetic proportions
|
||||
if 'combined' in self.output_types:
|
||||
assert 'bird' and 'front' not in self.output_types, \
|
||||
"combined figure cannot be print together with front or bird ones"
|
||||
|
||||
self.y_scale = self.width / (self.height * 2) # Defined proportion
|
||||
if self.y_scale < 0.95 or self.y_scale > 1.05: # allows more variation without resizing
|
||||
self.im = self.im.resize((self.width, round(self.height * self.y_scale)))
|
||||
self.width = self.im.size[0]
|
||||
self.height = self.im.size[1]
|
||||
fig_width = self.fig_width + 0.6 * self.fig_width
|
||||
fig_height = self.fig_width * self.height / self.width
|
||||
|
||||
# Distinguish between KITTI images and general images
|
||||
fig_ar_1 = 0.8
|
||||
width_ratio = 1.9
|
||||
self.extensions.append('.combined.png')
|
||||
|
||||
fig, (ax0, ax1) = plt.subplots(1, 2, sharey=False, gridspec_kw={'width_ratios': [width_ratio, 1]},
|
||||
figsize=(fig_width, fig_height))
|
||||
ax1.set_aspect(fig_ar_1)
|
||||
fig.set_tight_layout(True)
|
||||
fig.subplots_adjust(left=0.02, right=0.98, bottom=0, top=1, hspace=0, wspace=0.02)
|
||||
|
||||
figures.append(fig)
|
||||
assert 'front' not in self.output_types and 'bird' not in self.output_types, \
|
||||
"--combined arguments is not supported with other visualizations"
|
||||
|
||||
# Initialize front figure
|
||||
elif 'front' in self.output_types:
|
||||
width = self.fig_width
|
||||
height = self.fig_width * self.height / self.width
|
||||
self.extensions.append(".front.png")
|
||||
plt.figure(0)
|
||||
fig0, ax0 = plt.subplots(1, 1, figsize=(width, height))
|
||||
fig0.set_tight_layout(True)
|
||||
figures.append(fig0)
|
||||
|
||||
# Create front figure axis
|
||||
if any(xx in self.output_types for xx in ['front', 'combined']):
|
||||
ax0 = self.set_axes(ax0, axis=0)
|
||||
|
||||
divider = make_axes_locatable(ax0)
|
||||
cax = divider.append_axes('right', size='3%', pad=0.05)
|
||||
bar_ticks = self.z_max // 5 + 1
|
||||
norm = matplotlib.colors.Normalize(vmin=0, vmax=self.z_max)
|
||||
scalar_mappable = plt.cm.ScalarMappable(cmap=self.cmap, norm=norm)
|
||||
scalar_mappable.set_array([])
|
||||
plt.colorbar(scalar_mappable, ticks=np.linspace(0, self.z_max, bar_ticks),
|
||||
boundaries=np.arange(- 0.05, self.z_max + 0.1, .1), cax=cax, label='Z [m]')
|
||||
|
||||
axes.append(ax0)
|
||||
if not axes:
|
||||
axes.append(None)
|
||||
|
||||
# Initialize bird-eye-view figure
|
||||
if 'bird' in self.output_types:
|
||||
self.extensions.append(".bird.png")
|
||||
fig1, ax1 = plt.subplots(1, 1)
|
||||
fig1.set_tight_layout(True)
|
||||
figures.append(fig1)
|
||||
if any(xx in self.output_types for xx in ['bird', 'combined']):
|
||||
ax1 = self.set_axes(ax1, axis=1) # Adding field of view
|
||||
axes.append(ax1)
|
||||
return figures, axes
|
||||
|
||||
def draw(self, figures, axes, dic_out, image, show_all=False, draw_text=True, legend=True, draw_box=False,
|
||||
save=False, show=False):
|
||||
|
||||
# Process the annotation dictionary of monoloco
|
||||
self._process_results(dic_out)
|
||||
|
||||
# whether to include instances that don't match the ground-truth
|
||||
iterator = range(len(self.zz_pred)) if show_all else range(len(self.zz_gt))
|
||||
if not iterator:
|
||||
print("-"*110 + '\n' + "! No instances detected, be sure to include file with ground-truth values or "
|
||||
"use the command --show_all" + '\n' + "-"*110)
|
||||
|
||||
# Draw the front figure
|
||||
num = 0
|
||||
self.mpl_im0.set_data(image)
|
||||
for idx in iterator:
|
||||
if any(xx in self.output_types for xx in ['front', 'combined']) and self.zz_pred[idx] > 0:
|
||||
|
||||
color = self.cmap((self.zz_pred[idx] % self.z_max) / self.z_max)
|
||||
self.draw_circle(axes, self.uv_shoulders[idx], color)
|
||||
if draw_box:
|
||||
self.draw_boxes(axes, idx, color)
|
||||
|
||||
if draw_text:
|
||||
self.draw_text_front(axes, self.uv_shoulders[idx], num)
|
||||
num += 1
|
||||
|
||||
# Draw the bird figure
|
||||
num = 0
|
||||
for idx in iterator:
|
||||
if any(xx in self.output_types for xx in ['bird', 'combined']) and self.zz_pred[idx] > 0:
|
||||
|
||||
# Draw ground truth and uncertainty
|
||||
self.draw_uncertainty(axes, idx)
|
||||
|
||||
# Draw bird eye view text
|
||||
if draw_text:
|
||||
self.draw_text_bird(axes, idx, num)
|
||||
num += 1
|
||||
# Add the legend
|
||||
if legend:
|
||||
draw_legend(axes)
|
||||
|
||||
# Draw, save or/and show the figures
|
||||
for idx, fig in enumerate(figures):
|
||||
fig.canvas.draw()
|
||||
if save:
|
||||
fig.savefig(self.output_path + self.extensions[idx], bbox_inches='tight')
|
||||
if show:
|
||||
fig.show()
|
||||
plt.close(fig)
|
||||
|
||||
def draw_uncertainty(self, axes, idx):
|
||||
|
||||
theta = math.atan2(self.zz_pred[idx], self.xx_pred[idx])
|
||||
dic_std = {'ale': self.stds_ale[idx], 'epi': self.stds_epi[idx]}
|
||||
dic_x, dic_y = {}, {}
|
||||
|
||||
# Aleatoric and epistemic
|
||||
for key, std in dic_std.items():
|
||||
delta_x = std * math.cos(theta)
|
||||
delta_z = std * math.sin(theta)
|
||||
dic_x[key] = (self.xx_pred[idx] - delta_x, self.xx_pred[idx] + delta_x)
|
||||
dic_y[key] = (self.zz_pred[idx] - delta_z, self.zz_pred[idx] + delta_z)
|
||||
|
||||
# MonoLoco
|
||||
if not self.auxs:
|
||||
axes[1].plot(dic_x['epi'], dic_y['epi'], color='coral', linewidth=2, label="Epistemic Uncertainty")
|
||||
axes[1].plot(dic_x['ale'], dic_y['ale'], color='deepskyblue', linewidth=4, label="Aleatoric Uncertainty")
|
||||
axes[1].plot(self.xx_pred[idx], self.zz_pred[idx], color='cornflowerblue', label="Prediction", markersize=6,
|
||||
marker='o')
|
||||
if self.gt[idx]:
|
||||
axes[1].plot(self.xx_gt[idx], self.zz_gt[idx],
|
||||
color='k', label="Ground-truth", markersize=8, marker='x')
|
||||
|
||||
# MonStereo(stereo case)
|
||||
elif self.auxs[idx] > 0.5:
|
||||
axes[1].plot(dic_x['ale'], dic_y['ale'], color='r', linewidth=4, label="Prediction (mono)")
|
||||
axes[1].plot(dic_x['ale'], dic_y['ale'], color='deepskyblue', linewidth=4, label="Prediction (stereo+mono)")
|
||||
if self.gt[idx]:
|
||||
axes[1].plot(self.xx_gt[idx], self.zz_gt[idx],
|
||||
color='k', label="Ground-truth", markersize=8, marker='x')
|
||||
|
||||
# MonStereo (monocular case)
|
||||
else:
|
||||
axes[1].plot(dic_x['ale'], dic_y['ale'], color='deepskyblue', linewidth=4, label="Prediction (stereo+mono)")
|
||||
axes[1].plot(dic_x['ale'], dic_y['ale'], color='r', linewidth=4, label="Prediction (mono)")
|
||||
if self.gt[idx]:
|
||||
axes[1].plot(self.xx_gt[idx], self.zz_gt[idx],
|
||||
color='k', label="Ground-truth", markersize=8, marker='x')
|
||||
|
||||
def draw_ellipses(self, axes, idx):
|
||||
"""draw uncertainty ellipses"""
|
||||
target = get_task_error(self.dds_real[idx])
|
||||
angle_gt = get_angle(self.xx_gt[idx], self.zz_gt[idx])
|
||||
ellipse_real = Ellipse((self.xx_gt[idx], self.zz_gt[idx]), width=target * 2, height=1,
|
||||
angle=angle_gt, color='lightgreen', fill=True, label="Task error")
|
||||
axes[1].add_patch(ellipse_real)
|
||||
if abs(self.zz_gt[idx] - self.zz_pred[idx]) > 0.001:
|
||||
axes[1].plot(self.xx_gt[idx], self.zz_gt[idx], 'kx', label="Ground truth", markersize=3)
|
||||
|
||||
angle = get_angle(self.xx_pred[idx], self.zz_pred[idx])
|
||||
ellipse_ale = Ellipse((self.xx_pred[idx], self.zz_pred[idx]), width=self.stds_ale[idx] * 2,
|
||||
height=1, angle=angle, color='b', fill=False, label="Aleatoric Uncertainty",
|
||||
linewidth=1.3)
|
||||
ellipse_var = Ellipse((self.xx_pred[idx], self.zz_pred[idx]), width=self.stds_epi[idx] * 2,
|
||||
height=1, angle=angle, color='r', fill=False, label="Uncertainty",
|
||||
linewidth=1, linestyle='--')
|
||||
|
||||
axes[1].add_patch(ellipse_ale)
|
||||
if self.epistemic:
|
||||
axes[1].add_patch(ellipse_var)
|
||||
|
||||
axes[1].plot(self.xx_pred[idx], self.zz_pred[idx], 'ro', label="Predicted", markersize=3)
|
||||
|
||||
def draw_boxes(self, axes, idx, color):
|
||||
ww_box = self.boxes[idx][2] - self.boxes[idx][0]
|
||||
hh_box = (self.boxes[idx][3] - self.boxes[idx][1]) * self.y_scale
|
||||
ww_box_gt = self.boxes_gt[idx][2] - self.boxes_gt[idx][0]
|
||||
hh_box_gt = (self.boxes_gt[idx][3] - self.boxes_gt[idx][1]) * self.y_scale
|
||||
|
||||
rectangle = Rectangle((self.boxes[idx][0], self.boxes[idx][1] * self.y_scale),
|
||||
width=ww_box, height=hh_box, fill=False, color=color, linewidth=3)
|
||||
rectangle_gt = Rectangle((self.boxes_gt[idx][0], self.boxes_gt[idx][1] * self.y_scale),
|
||||
width=ww_box_gt, height=hh_box_gt, fill=False, color='g', linewidth=2)
|
||||
axes[0].add_patch(rectangle_gt)
|
||||
axes[0].add_patch(rectangle)
|
||||
|
||||
def draw_text_front(self, axes, uv, num):
|
||||
axes[0].text(uv[0] + self.radius, uv[1] * self.y_scale - self.radius, str(num),
|
||||
fontsize=self.FONTSIZE, color=self.TEXTCOLOR, weight='bold')
|
||||
|
||||
def draw_text_bird(self, axes, idx, num):
|
||||
"""Plot the number in the bird eye view map"""
|
||||
|
||||
std = self.stds_epi[idx] if self.stds_epi[idx] > 0 else self.stds_ale[idx]
|
||||
theta = math.atan2(self.zz_pred[idx], self.xx_pred[idx])
|
||||
|
||||
delta_x = std * math.cos(theta)
|
||||
delta_z = std * math.sin(theta)
|
||||
|
||||
axes[1].text(self.xx_pred[idx] + delta_x, self.zz_pred[idx] + delta_z,
|
||||
str(num), fontsize=self.FONTSIZE_BV, color='darkorange')
|
||||
|
||||
def draw_circle(self, axes, uv, color):
|
||||
|
||||
circle = Circle((uv[0], uv[1] * self.y_scale), radius=self.radius, color=color, fill=True)
|
||||
axes[0].add_patch(circle)
|
||||
|
||||
def set_axes(self, ax, axis):
|
||||
assert axis in (0, 1)
|
||||
|
||||
if axis == 0:
|
||||
ax.set_axis_off()
|
||||
ax.set_xlim(0, self.width)
|
||||
ax.set_ylim(self.height, 0)
|
||||
self.mpl_im0 = ax.imshow(self.im)
|
||||
ax.get_xaxis().set_visible(False)
|
||||
ax.get_yaxis().set_visible(False)
|
||||
|
||||
else:
|
||||
uv_max = [0., float(self.height)]
|
||||
xyz_max = pixel_to_camera(uv_max, self.kk, self.z_max)
|
||||
x_max = abs(xyz_max[0]) # shortcut to avoid oval circles in case of different kk
|
||||
corr = round(float(x_max / 3))
|
||||
ax.plot([0, x_max], [0, self.z_max], 'k--')
|
||||
ax.plot([0, -x_max], [0, self.z_max], 'k--')
|
||||
ax.set_xlim(-x_max+corr, x_max-corr)
|
||||
ax.set_ylim(0, self.z_max+1)
|
||||
ax.set_xlabel("X [m]")
|
||||
|
||||
return ax
|
||||
|
||||
|
||||
def draw_legend(axes):
|
||||
handles, labels = axes[1].get_legend_handles_labels()
|
||||
by_label = OrderedDict(zip(labels, handles))
|
||||
axes[1].legend(by_label.values(), by_label.keys(), loc='best')
|
||||
|
||||
|
||||
def get_angle(xx, zz):
|
||||
"""Obtain the points to plot the confidence of each annotation"""
|
||||
|
||||
theta = math.atan2(zz, xx)
|
||||
angle = theta * (180 / math.pi)
|
||||
|
||||
return angle
|
||||
44
setup.py
Normal file
44
setup.py
Normal file
@ -0,0 +1,44 @@
|
||||
from setuptools import setup
|
||||
|
||||
# extract version from __init__.py
|
||||
with open('monstereo/__init__.py', 'r') as f:
|
||||
VERSION_LINE = [l for l in f if l.startswith('__version__')][0]
|
||||
VERSION = VERSION_LINE.split('=')[1].strip()[1:-1]
|
||||
|
||||
setup(
|
||||
name='monstereo',
|
||||
version=VERSION,
|
||||
packages=[
|
||||
'monstereo',
|
||||
'monstereo.network',
|
||||
'monstereo.eval',
|
||||
'monstereo.train',
|
||||
'monstereo.prep',
|
||||
'monstereo.visuals',
|
||||
'monstereo.utils'
|
||||
],
|
||||
license='GNU AGPLv3',
|
||||
description='MonStereo',
|
||||
long_description=open('README.md').read(),
|
||||
long_description_content_type='text/markdown',
|
||||
url='None',
|
||||
zip_safe=False,
|
||||
|
||||
install_requires=[
|
||||
'openpifpaf==0.8.0',
|
||||
'torch==1.1.0',
|
||||
'torchvision==0.3.0'
|
||||
],
|
||||
extras_require={
|
||||
'eval': [
|
||||
'tabulate==0.8.3',
|
||||
'sklearn',
|
||||
'pandas',
|
||||
'pylint',
|
||||
'pytest',
|
||||
],
|
||||
'prep': [
|
||||
'nuscenes-devkit==1.0.2',
|
||||
],
|
||||
},
|
||||
)
|
||||
3712
splits/kitti_train.txt
Normal file
3712
splits/kitti_train.txt
Normal file
File diff suppressed because it is too large
Load Diff
3769
splits/kitti_val.txt
Normal file
3769
splits/kitti_val.txt
Normal file
File diff suppressed because it is too large
Load Diff
100
splits/nuscenes_teaser_scenes.txt
Normal file
100
splits/nuscenes_teaser_scenes.txt
Normal file
@ -0,0 +1,100 @@
|
||||
0d2cc345342a460e94ff54748338ac22
|
||||
bc4fd5a05a004333b9411754630f4cba
|
||||
6ab3d1e9476d4cd89d4949d69d056901
|
||||
75a4ec12042542149b0a77a0a10d6330
|
||||
8fbbe701baf641359129ea166e1674ec
|
||||
15e1fa06e30e438a98430cc1fd0e8a69
|
||||
448cf480b0b8400a86881d28c2c5f734
|
||||
bef135921f374f838bf0badae55cac83
|
||||
a0942c87bc704f74a86b6513860e3f05
|
||||
ab6eea0e06c84f70be411a9d36636a7a
|
||||
2ffd7e2a1daf4b928464ddb2ed3dca59
|
||||
634a8c5835e44aec912604a9a1972a5d
|
||||
8931a57994764c9b945a7a1b352c9ae5
|
||||
fd5a3c6d3ad44954a8045edbe9d93763
|
||||
7cf32f906f50415786414ce8bbe10e9b
|
||||
c7492bdc08f8450fa580b7787331f0c9
|
||||
265f002f02d447ad9074813292eef75e
|
||||
73030fb67d3c46cfb5e590168088ae39
|
||||
c3e0e9f6ee8d4170a3d22a6179f1ca3a
|
||||
25496f19ffd14bd088cb430bfc01a4d7
|
||||
6f5133fe62b240e797bac25aeff8b531
|
||||
7deb4760e2244f32b57f9d631b535b66
|
||||
bc219c0fa63b43b4b9dddab47fce1fef
|
||||
9a61a88ed9094334a73aa93c08222110
|
||||
dd61533869aa48f2aaa7e8a6418bdbe6
|
||||
daa9fce50073470398da3c2bccdaf21b
|
||||
c075fbdd97124beaba95bc5c25149f30
|
||||
41fde20fedcd4d22ab26811688612870
|
||||
d1e57234fd6a463d963670938f9f556e
|
||||
813213458a214a39a1d1fc77fa52fa34
|
||||
efa5c96f05594f41a2498eb9f2e7ad99
|
||||
3dd9ad3f963e4f588d75c112cbf07f56
|
||||
b51869782c0e464b8021eb798609f35f
|
||||
de943e246dad4ad686de98008a634ecf
|
||||
4d475873416a4860900f5af213e0027c
|
||||
03ee880dd4e348f4b3407f0d073c7c70
|
||||
7e3a6bdd6c6f4c8fb018cff404974446
|
||||
d0880a386b6d434bb5cd13c134af7a3e
|
||||
d7ebcbbd26d849b384c11bec8df28a9b
|
||||
0c601ff2bf004fccafec366b08bf29e2
|
||||
b79d940da8df43d09ee972c2414ffeca
|
||||
1d4db80d13f342aba4881b38099bc4b7
|
||||
3a1850241080418b88dcee97c7d17ed7
|
||||
6520b5f0d568414c973f791b30ee1548
|
||||
82aef599650d462db73731b7ff40918b
|
||||
f444b757d7e2444c889da10f02b73491
|
||||
9047b53fd41540649dce014a128cbe1b
|
||||
6e81ee0f64274490a403bbd6482c2bf9
|
||||
bb73edb93a0a46c4be997c576e9beb61
|
||||
3dd2be428534403ba150a0b60abc6a0a
|
||||
5a0dd8908a3a459b83ec5eb6ac7d0f82
|
||||
7a74411015ad4aadaa9f15b8a7001652
|
||||
2f56eb47c64f43df8902d9f88aa8a019
|
||||
8edbc31083ab4fb187626e5b3c0411f7
|
||||
bc1e8034cf774087bb59af4484125e7d
|
||||
359f9c029ae44e1d9d47c05bc7915561
|
||||
70368a18644046f898ab836fc8a3c03f
|
||||
8758419c03ab47a59ea6d6620176f3a3
|
||||
eac3102e4cc24d4b95532bcc711a902f
|
||||
798e8504b4364d378270333a349ef508
|
||||
4047f251c21a475abb49518e0fa6fa9e
|
||||
cf550d9670274ac1a7f274fbacb39c48
|
||||
095d9b93b583425f910ae2afaf1d017d
|
||||
9a81caa3d5134d7f87ee4786ccef68f7
|
||||
0e37d4a357db4246a908cfd97d17efc6
|
||||
37b32e4e8cf846679b2c0cb342dbd4aa
|
||||
6d4b2bd795ae4c66900ad98ccd2371a6
|
||||
8b43539a55374b6c8ed60c95a42d63a2
|
||||
446af4b1d7da4735a607bc3e45c2e0b3
|
||||
83773bcf46ac486383529098de0542dd
|
||||
433a14f8dcf5457fb2c4def5c749122a
|
||||
9a1188aba4bf458c8220818a6c0be55a
|
||||
dcd5bc29543747e28ef02816dd458290
|
||||
bb028034cb474e3da8953f83752a70a9
|
||||
cc8c0bf57f984915a77078b10eb33198
|
||||
a1ca2ba59ac9452fb3da60019bf32c71
|
||||
ce2d6bdc33084dc1a2780f41f6740e06
|
||||
e6cb595f6df44b3999db28c65f2244ac
|
||||
cb3ef7b7ef124983b336c781f134cdfb
|
||||
bed8426a524d45afab05b19cf02386b2
|
||||
36fbee38a28543ea9e27a67d64e1dee4
|
||||
00590cbfa24a430a8c274b51e1c71231
|
||||
52b30ecd104a4f4eab6f8f5684a73e56
|
||||
5c9bd7ead37e4aa9989f7909f3a78baa
|
||||
ef5f216134a94e308697ab4c75402a20
|
||||
dc6235e2281943548084c484cb38b876
|
||||
8857cf15fa7049a6b000490835d3b9fc
|
||||
4f28b42169f4404cbab4b43476e13885
|
||||
f57957ebc5654b649a0786d993b64be4
|
||||
d90b94e8bfd446cd9407f48665122268
|
||||
4db0eee3b82d49b198c1a411cf7f7d68
|
||||
3700281722c1440e9605ec077bdce397
|
||||
df28f1cfafc04219a7f7caab45e12d28
|
||||
7365754410624f2f85087003f4ed41ad
|
||||
01c8c59260db4a3682d7b4f8da65425e
|
||||
7365495b74464629813b41eacdb711af
|
||||
cba3ddd5c3664a43b6a08e586e094900
|
||||
91c071bcc1ad4fa1b555399e1cfbab79
|
||||
b4b82c4d338a4b6d86835388ce076345
|
||||
68e79a88244f447f993a72da444b29ba
|
||||
1
splits/split_nuscenes_teaser.json
Normal file
1
splits/split_nuscenes_teaser.json
Normal file
@ -0,0 +1 @@
|
||||
{"train": ["83773bcf46ac486383529098de0542dd", "8fbbe701baf641359129ea166e1674ec", "15e1fa06e30e438a98430cc1fd0e8a69", "eac3102e4cc24d4b95532bcc711a902f", "634a8c5835e44aec912604a9a1972a5d", "b79d940da8df43d09ee972c2414ffeca", "73030fb67d3c46cfb5e590168088ae39", "3dd9ad3f963e4f588d75c112cbf07f56", "37b32e4e8cf846679b2c0cb342dbd4aa", "4db0eee3b82d49b198c1a411cf7f7d68", "c075fbdd97124beaba95bc5c25149f30", "433a14f8dcf5457fb2c4def5c749122a", "bc1e8034cf774087bb59af4484125e7d", "00590cbfa24a430a8c274b51e1c71231", "7a74411015ad4aadaa9f15b8a7001652", "36fbee38a28543ea9e27a67d64e1dee4", "8758419c03ab47a59ea6d6620176f3a3", "bef135921f374f838bf0badae55cac83", "6d4b2bd795ae4c66900ad98ccd2371a6", "448cf480b0b8400a86881d28c2c5f734", "df28f1cfafc04219a7f7caab45e12d28", "25496f19ffd14bd088cb430bfc01a4d7", "265f002f02d447ad9074813292eef75e", "91c071bcc1ad4fa1b555399e1cfbab79", "70368a18644046f898ab836fc8a3c03f", "a0942c87bc704f74a86b6513860e3f05", "dc6235e2281943548084c484cb38b876", "ef5f216134a94e308697ab4c75402a20", "8931a57994764c9b945a7a1b352c9ae5", "9047b53fd41540649dce014a128cbe1b", "bc219c0fa63b43b4b9dddab47fce1fef", "0c601ff2bf004fccafec366b08bf29e2", "4047f251c21a475abb49518e0fa6fa9e", "6f5133fe62b240e797bac25aeff8b531", "7365495b74464629813b41eacdb711af", "7365754410624f2f85087003f4ed41ad", "cba3ddd5c3664a43b6a08e586e094900", "1d4db80d13f342aba4881b38099bc4b7", "dcd5bc29543747e28ef02816dd458290", "8b43539a55374b6c8ed60c95a42d63a2", "bc4fd5a05a004333b9411754630f4cba", "82aef599650d462db73731b7ff40918b", "d0880a386b6d434bb5cd13c134af7a3e", "d90b94e8bfd446cd9407f48665122268", "6e81ee0f64274490a403bbd6482c2bf9", "daa9fce50073470398da3c2bccdaf21b", "cf550d9670274ac1a7f274fbacb39c48", "efa5c96f05594f41a2498eb9f2e7ad99", "41fde20fedcd4d22ab26811688612870", "01c8c59260db4a3682d7b4f8da65425e", "fd5a3c6d3ad44954a8045edbe9d93763", "68e79a88244f447f993a72da444b29ba", "c7492bdc08f8450fa580b7787331f0c9", "03ee880dd4e348f4b3407f0d073c7c70", "ce2d6bdc33084dc1a2780f41f6740e06", "0d2cc345342a460e94ff54748338ac22", "d7ebcbbd26d849b384c11bec8df28a9b", "cb3ef7b7ef124983b336c781f134cdfb", "52b30ecd104a4f4eab6f8f5684a73e56", "5a0dd8908a3a459b83ec5eb6ac7d0f82", "dd61533869aa48f2aaa7e8a6418bdbe6", "3dd2be428534403ba150a0b60abc6a0a", "095d9b93b583425f910ae2afaf1d017d", "cc8c0bf57f984915a77078b10eb33198"], "val": ["f57957ebc5654b649a0786d993b64be4", "bb028034cb474e3da8953f83752a70a9", "6520b5f0d568414c973f791b30ee1548", "0e37d4a357db4246a908cfd97d17efc6", "3700281722c1440e9605ec077bdce397", "2ffd7e2a1daf4b928464ddb2ed3dca59", "798e8504b4364d378270333a349ef508", "de943e246dad4ad686de98008a634ecf", "7deb4760e2244f32b57f9d631b535b66", "3a1850241080418b88dcee97c7d17ed7", "5c9bd7ead37e4aa9989f7909f3a78baa", "bed8426a524d45afab05b19cf02386b2", "9a1188aba4bf458c8220818a6c0be55a", "446af4b1d7da4735a607bc3e45c2e0b3", "2f56eb47c64f43df8902d9f88aa8a019", "f444b757d7e2444c889da10f02b73491", "4d475873416a4860900f5af213e0027c", "7e3a6bdd6c6f4c8fb018cff404974446", "8857cf15fa7049a6b000490835d3b9fc", "ab6eea0e06c84f70be411a9d36636a7a", "6ab3d1e9476d4cd89d4949d69d056901", "c3e0e9f6ee8d4170a3d22a6179f1ca3a", "a1ca2ba59ac9452fb3da60019bf32c71", "b4b82c4d338a4b6d86835388ce076345", "9a81caa3d5134d7f87ee4786ccef68f7", "b51869782c0e464b8021eb798609f35f", "8edbc31083ab4fb187626e5b3c0411f7", "9a61a88ed9094334a73aa93c08222110"], "test": []}
|
||||
1
tests/002282.png.pifpaf.json
Normal file
1
tests/002282.png.pifpaf.json
Normal file
File diff suppressed because one or more lines are too long
1
tests/joints_sample.json
Normal file
1
tests/joints_sample.json
Normal file
File diff suppressed because one or more lines are too long
89
tests/test_iou.ipynb
Normal file
89
tests/test_iou.ipynb
Normal file
@ -0,0 +1,89 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import math\n",
|
||||
"def calculate_iou(box1, box2):\n",
|
||||
"\n",
|
||||
" # Calculate the (x1, y1, x2, y2) coordinates of the intersection of box1 and box2. Calculate its Area.\n",
|
||||
" xi1 = max(box1[0], box2[0])\n",
|
||||
" yi1 = max(box1[1], box2[1])\n",
|
||||
" xi2 = min(box1[2], box2[2])\n",
|
||||
" yi2 = min(box1[3], box2[3])\n",
|
||||
" inter_area = max((xi2 - xi1), 0) * max((yi2 - yi1), 0) # Max keeps into account not overlapping box\n",
|
||||
"\n",
|
||||
" # Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B)\n",
|
||||
" box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])\n",
|
||||
" box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])\n",
|
||||
" union_area = box1_area + box2_area - inter_area\n",
|
||||
"\n",
|
||||
" # compute the IoU\n",
|
||||
" iou = inter_area / union_area\n",
|
||||
"\n",
|
||||
" return iou"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 64,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"15.0\n",
|
||||
"[8.450052369622647, 12.393410142113215, 88.45005236962265, 77.39341014211321]\n",
|
||||
"0.4850460596873889\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"x1 = 75\n",
|
||||
"y1 = 60\n",
|
||||
"\n",
|
||||
"box1 = [0, 0, x1, y1]\n",
|
||||
"alpha = math.atan2(110,75) # good number\n",
|
||||
"diag = 15\n",
|
||||
"x_cateto = diag * math.cos(alpha)\n",
|
||||
"y_cateto = diag * math.sin(alpha)\n",
|
||||
"print(math.sqrt(x_cateto**2 + y_cateto**2))\n",
|
||||
"box2 = [x_cateto, y_cateto, x1 + x_cateto + 5, y1 + y_cateto+ 5]\n",
|
||||
"print(box2)\n",
|
||||
"print(calculate_iou(box1, box2))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
69
tests/test_package.py
Normal file
69
tests/test_package.py
Normal file
@ -0,0 +1,69 @@
|
||||
"""Test if the main modules of the package run correctly"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
|
||||
# Python does not consider the current directory to be a package
|
||||
sys.path.insert(0, os.path.join('..', 'monoloco'))
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from stereoloco.train import Trainer
|
||||
from stereoloco.network import MonoLoco
|
||||
from stereoloco.network.process import preprocess_pifpaf, factory_for_gt
|
||||
from stereoloco.visuals.printer import Printer
|
||||
|
||||
JOINTS = 'tests/joints_sample.json'
|
||||
PIFPAF_KEYPOINTS = 'tests/002282.png.pifpaf.json'
|
||||
IMAGE = 'docs/002282.png'
|
||||
|
||||
|
||||
def tst_trainer(joints):
|
||||
trainer = Trainer(joints=joints, epochs=150, lr=0.01)
|
||||
_ = trainer.train()
|
||||
dic_err, model = trainer.evaluate()
|
||||
return dic_err['val']['all']['mean'], model
|
||||
|
||||
|
||||
def tst_prediction(model, path_keypoints):
|
||||
with open(path_keypoints, 'r') as f:
|
||||
pifpaf_out = json.load(f)
|
||||
|
||||
kk, _ = factory_for_gt(im_size=[1240, 340])
|
||||
|
||||
# Preprocess pifpaf outputs and run monoloco
|
||||
boxes, keypoints = preprocess_pifpaf(pifpaf_out)
|
||||
monoloco = MonoLoco(model)
|
||||
outputs, varss = monoloco.forward(keypoints, kk)
|
||||
dic_out = monoloco.post_process(outputs, varss, boxes, keypoints, kk)
|
||||
return dic_out, kk
|
||||
|
||||
|
||||
def tst_printer(dic_out, kk, image_path):
|
||||
"""Draw a fake figure"""
|
||||
with open(image_path, 'rb') as f:
|
||||
pil_image = Image.open(f).convert('RGB')
|
||||
printer = Printer(image=pil_image, output_path='tests/test_image', kk=kk, output_types=['combined'], z_max=15)
|
||||
figures, axes = printer.factory_axes()
|
||||
printer.draw(figures, axes, dic_out, pil_image, save=True)
|
||||
|
||||
|
||||
def test_package():
|
||||
|
||||
# Training test
|
||||
val_acc, model = tst_trainer(JOINTS)
|
||||
assert val_acc < 2.5
|
||||
|
||||
# Prediction test
|
||||
dic_out, kk = tst_prediction(model, PIFPAF_KEYPOINTS)
|
||||
assert dic_out['boxes'] and kk
|
||||
|
||||
# Visualization test
|
||||
tst_printer(dic_out, kk, IMAGE)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
24
tests/test_utils.py
Normal file
24
tests/test_utils.py
Normal file
@ -0,0 +1,24 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
# Python does not consider the current directory to be a package
|
||||
sys.path.insert(0, os.path.join('..', 'monoloco'))
|
||||
|
||||
|
||||
def test_iou():
|
||||
from stereoloco.utils import get_iou_matrix
|
||||
boxes_pred = [[1, 100, 1, 200]]
|
||||
boxes_gt = [[100., 120., 150., 160.],[12, 110, 130., 160.]]
|
||||
iou_matrix = get_iou_matrix(boxes_pred, boxes_gt)
|
||||
assert iou_matrix.shape == (len(boxes_pred), len(boxes_gt))
|
||||
|
||||
|
||||
def test_pixel_to_camera():
|
||||
from stereoloco.utils import pixel_to_camera
|
||||
kk = [[718.3351, 0., 600.3891], [0., 718.3351, 181.5122], [0., 0., 1.]]
|
||||
zz = 10
|
||||
uv_vector = [1000., 400.]
|
||||
xx_norm = pixel_to_camera(uv_vector, kk, 1)[0]
|
||||
xx_1 = xx_norm * zz
|
||||
xx_2 = pixel_to_camera(uv_vector, kk, zz)[0]
|
||||
assert xx_1 == xx_2
|
||||
23
tests/test_visuals.py
Normal file
23
tests/test_visuals.py
Normal file
@ -0,0 +1,23 @@
|
||||
import os
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
|
||||
from PIL import Image
|
||||
|
||||
# Python does not consider the current directory to be a package
|
||||
sys.path.insert(0, os.path.join('..', 'monoloco'))
|
||||
|
||||
|
||||
def test_printer():
|
||||
"""Draw a fake figure"""
|
||||
from stereoloco.visuals.printer import Printer
|
||||
test_list = [[718.3351, 0., 600.3891], [0., 718.3351, 181.5122], [0., 0., 1.]]
|
||||
boxes = [xx + [0] for xx in test_list]
|
||||
kk = test_list
|
||||
dict_ann = defaultdict(lambda: [1., 2., 3.], xyz_real=test_list, xyz_pred=test_list, uv_shoulders=test_list,
|
||||
boxes=boxes, boxes_gt=boxes)
|
||||
with open('docs/002282.png', 'rb') as f:
|
||||
pil_image = Image.open(f).convert('RGB')
|
||||
printer = Printer(image=pil_image, output_path=None, kk=kk, output_types=['combined'])
|
||||
figures, axes = printer.factory_axes()
|
||||
printer.draw(figures, axes, dict_ann, pil_image)
|
||||
Loading…
Reference in New Issue
Block a user